| تعداد نشریات | 21 |
| تعداد شمارهها | 687 |
| تعداد مقالات | 9,985 |
| تعداد مشاهده مقاله | 70,957,061 |
| تعداد دریافت فایل اصل مقاله | 62,422,381 |
Approximation results of non-homogeneous Cauchy problem of semigroup of linear operators | ||
| International Journal of Nonlinear Analysis and Applications | ||
| مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 21 بهمن 1404 اصل مقاله (360 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22075/ijnaa.2025.33612.5023 | ||
| نویسندگان | ||
| Akinola Yussuff Akinyele* 1؛ Ayodele Olakiitan Owolanke2؛ Aminat Olabisi Ajiboye3 | ||
| 1Department of Mathematics, University of Ilorin, Ilorin, Nigeria | ||
| 2Department of Mathematical Sciences, Olusegun Agagu University of Science and Technology, Okitipupa, Nigeria | ||
| 3Department of Mathematics, Federal University, Oye-Ekiti, Nigeria | ||
| تاریخ دریافت: 06 فروردین 1403، تاریخ بازنگری: 01 بهمن 1403، تاریخ پذیرش: 11 بهمن 1403 | ||
| چکیده | ||
| In this paper, results of $\omega$-order reversing partial contraction mapping generated by approximation results of non-homogeneous Cauchy problem were presented. We investigated the concepts of $C'$, strong and, respectively, $C^0$-solution. We established that $Z:D(Z)\subseteq X\to X$ is the infinitesimal generator of a $C_0$-semigroup of contraction, $\xi\in X$ and $f\in L^2(a,b;X)$. Furthermore, we deduced that the unique $C^0$-solution is strong and that the class is absolutely continuous on $[a,b]$.\\ | ||
| کلیدواژهها | ||
| $\omega$-$ORCP_n$؛ Absolutely Continuous؛ $C'$-solution؛ Mild Solution | ||
| مراجع | ||
|
[1] A.Y. Akinyele, O.E. Jimoh, J.B. Omosowon, and K.A. Bello, Results of semigroup of linear operator generating a continuous time Markov semigroup, Earthline J. Math. Sci. 10 (2022), no. 1, 97–108.
[2] A.Y. Akinyele, K. Rauf, J.B. Omosowon, B. Sambo, and G.O. Ibrahim, Differentiable and analytic results on ω-order preserving partial contraction mapping in semigroup of linear operator, Asian Pacific J. Math. Appl. 8 (2021), no. 2, 1–13.
[3] A.V. Balakrishnan, An operator calculus for infinitesimal generators of semigroup, Trans. Amer. Math. Soc. 91 (1959), 330–353.
[4] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133–181.
[5] H. Brezis and T. Gallouet, Nonlinear Schrödinger evolution equation, Nonlinear Anal. TMA 4 (1980), 677–682.
[6] R. Chill and Y. Tomilov, Stability Operator Semigroup, Banach Center Publication 75, Polish Academy of Sciences, Warsaw, 2007.
[7] E.B. Davies, Linear Operator and their Spectra, Cambridge Studies in Advanced Mathematics, Cambridge University Press, New York, 2007.
[8] K. Engel and R. Nagel, One-parameter Semigroups for Linear Equations, Graduate Texts in Mathematics, 194, Springer, New York, 2000.
[9] J.B. Omosowon, A.Y. Akinyele, O.Y. Saka-Balogun, and M.A. Ganiyu, Analytic results of semigroup of linear operator with dynamic boundary conditions, Asian J. Math. Appl. 2020 (2020), 1–10.
[10] J.B. Omosowon, A.Y. Akinyele, and F.M. Jimoh, Dual properties of ω-order reversing partial contraction mapping in semigroup of linear operator, Asian J. Math. Appl. 2021 (2021), 1–10.
[11] J.B. Omosowon, A.Y. Akinyele, and O.Y. Saka-Balogun, Results of semigroup of linear operator generating a wave equation, Earthline J. Math. Sci. 11 (2023), no. 1, 173–182.
[12] K. Rauf and A.Y. Akinyele, Properties of ω-order-preserving partial contraction mapping and its relation to C₀-semigroup, Int. J. Math. Comput. Sci. 14 (2019), no. 1, 61–68.
[13] K. Rauf, A.Y. Akinyele, M.O. Etuk, R.O. Zubair, and M.A. Aasa, Some result of stability and spectra properties on semigroup of linear operators, Adv. Pure Math. 9 (2019), 43–51.
[14] I.I. Vrabie, C₀-semigroup and Application, Mathematics Studies, 191, Elsevier, North-Holland, 2003.
[15] K. Yosida, On the differentiability and representation of one-parameter semigroups of linear operators, J. Math. Soc. Jap. 1 (1948), 15–21. | ||
|
آمار تعداد مشاهده مقاله: 7 تعداد دریافت فایل اصل مقاله: 12 |
||