| تعداد نشریات | 21 |
| تعداد شمارهها | 688 |
| تعداد مقالات | 9,988 |
| تعداد مشاهده مقاله | 70,966,112 |
| تعداد دریافت فایل اصل مقاله | 62,428,504 |
Multi-Stage Active Networks and Switched-Capacitor Synergy: A Novel Ultra-High-Gain DC-DC Converter for EV Powertrains | ||
| Journal of Modeling and Simulation in Electrical and Electronics Engineering | ||
| دوره 6، شماره 2 - شماره پیاپی 24، شهریور 2026، صفحه 1-20 اصل مقاله (1.72 M) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.22075/mseee.2026.39908.1239 | ||
| نویسندگان | ||
| Hossein Siavashi؛ Pezhman Bayat* ؛ Seyed Mohammad Azimi؛ Peyman Bayat | ||
| Department of Electrical Engineering, Hamedan University of Technology, Hamedan, Iran | ||
| تاریخ دریافت: 12 آذر 1404، تاریخ بازنگری: 28 دی 1404، تاریخ پذیرش: 18 بهمن 1404 | ||
| چکیده | ||
| This paper introduces a novel ultra-high-gain DC–DC converter architecture specifically designed for electric vehicle (EV) applications. The converter integrates a switched-capacitor cell with multi-stage inductor–capacitor–two diodes (LC2D) active networks to achieve sequential energy transfer and voltage stacking while maintaining a minimal component count, including only one semiconductor switch. The proposed topology directly addresses the limitations of conventional converters, namely, restricted voltage gains and excessive voltage stress. Simulation results confirm that the converter achieves a voltage gain of up to 10× at a duty cycle of 41.5%, stepping a 45V battery input to a 450V DC bus level typical of EV traction inverters and onboard chargers. The design consistently delivers conversion efficiencies above 95% across a 2-5kW load range, with stable operation, minimal output ripple, and reduced electromagnetic interference. The supported power range aligns with the needs of auxiliary and small-scale EV subsystems. By combining structural simplicity with quantitative performance improvements, the proposed converter offers a compact, reliable, and cost-effective solution for EV powertrains. Overall, the results demonstrate that the converter provides a rigorously validated pathway toward high-gain, high-efficiency DC–DC conversion in EV systems. | ||
| کلیدواژهها | ||
| DC-DC Converter؛ Electric Vehicle؛ Multi-stage Active Networks؛ Semiconductor Switch؛ Switched Capacitors | ||
| مراجع | ||
|
[1] L. He, X. Xu, J. Chen, J. Sun, D. Guo, and T. Zeng, “A plug-play active resonant soft switching for current-auto-balance interleaved high step-up DC/DC converter,” IEEE Trans. Power Electron., vol. 34, no. 8, pp. 7603–7616, Aug. 2019, doi: 10.1109/TPEL.2018.2878340.
[2] J. Ding, S. W. Zhao, H. J. Yin, P. Qin, and G. B. Zeng, “High step-up DC/DC converters based on coupled inductor and switched capacitors,” IET Power Electron., vol. 13, no. 14, pp. 3099–3109, 2020, doi: 10.1049/iet-pel.2019.1264.
[3] M. L. Alghaythi, R. M. O’Connell, N. E. Islam, M. M. S. Khan, and J. M. Guerrero, “A high step-up interleaved DC-DC converter with voltage multiplier and coupled inductors for renewable energy systems,” IEEE Access, vol. 8, pp. 123165–123174, 2020, doi: 10.1109/ACCESS.2020.3007137.
[4] R. Ebrahimi, H. MadadiKojabadi, L. Chang, and F. Blaabjerg, “Coupled-inductor-based high step-up DC-DC converter,” IET Power Electron., vol. 12, no. 12, pp. 3093–3104, 2019, doi: 10.1049/iet-pel.2018.6151.
[5] Z. Saadatizadeh, P. C. Heris, E. Babaei, and F. Sadikoglu, “Expandable interleaved high voltage-gain boost DC-DC converter with low switching stress,” Int. J. Circuit Theory Appl., vol. 47, pp. 782–804, 2019, doi: 10.1002/cta.2608.
[6] M. Shaneh, M. Niroomand, and E. Adib, “Ultrahigh-step-up nonisolated interleaved boost converter,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 8, no. 3, pp. 2747–2758, 2020, doi: 10.1109/JESTPE.2018.2884960.
[7] M. Sabahi, H. Tarzamni, and P. Kolahian, “Operation and design analysis of an interleaved high step-up DC–DC converter with improved harnessing of magnetic energy,” Int. J. Circuit Theory Appl., vol. 49, no. 2, pp. 221–243, 2021, doi: 10.1002/cta.2913.
[8] M. Shaneh, M. Niroomand, and E. Adib, “Non-isolated interleaved bidirectional DC–DC converter with high step voltage ratio and minimum number of switches,” IET Power Electron., vol. 12, no. 6, pp. 1510–1520, 2019, doi: 10.1049/iet-pel.2018.6042.
[9] H. Lei, R. Hao, X. You, and F. Li, “Nonisolated high step-up soft-switching DC–DC converter with interleaving and Dickson switched-capacitor techniques,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 8, no. 3, pp. 2007–2021, 2020, doi: 10.1109/JESTPE.2019.2958316.
[10] J. Melo de Andrade, R. F. Coelho, and T. B. Lazzarin, “High step-up DC–DC converter based on modified active switched-inductor and switched-capacitor cells,” IET Power Electron., vol. 13, no. 14, pp. 3127–3137, 2020, doi: 10.1049/iet-pel.2020.0064.
[11] Y. Huang, S.-C. Tan, and S. Y. Hui, “Multiphase-interleaved high step-up DC/DC resonant converter for wide load range,” IEEE Trans. Power Electron., vol. 34, no. 8, pp. 7703–7718, 2019, doi: 10.1109/TPEL.2018.2880803.
[12] C. Chen, J. Liu, and H. Lee, “A 2-MHz 9–45-V input high-efficiency three-switch ZVS step-up/-down hybrid converter,” IEEE J. Solid-State Circuits, vol. 56, no. 3, pp. 855–865, 2021, doi: 10.1109/JSSC.2020.3036757.
[13] Y. Chen, B. Zhang, F. Xie, W. Xiao, D. Qiu, and Y. Chen, “Common ground quasi-Z-source series DC–DC converters utilizing negative output characteristics,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 10, no. 4, pp. 3861–3872, 2022, doi: 10.1109/JESTPE.2021.3101485.
[14] A. B. Shitole, S. Sathyan, H. M. Suryawanshi, G. G. Talapur, and P. Chaturvedi, “Soft-switched high voltage gain boost-integrated flyback converter interfaced single-phase grid-tied inverter for SPV integration,” IEEE Trans. Ind. Appl., vol. 54, no. 1, pp. 482–493, 2018, doi: 10.1109/TIA.2017.2752679.
[15] B. Poorali, H. M. Jazi, and E. Adib, “Improved high step-up Z-source DC–DC converter with single core and ZVT operation,” IEEE Trans. Power Electron., vol. 33, no. 11, pp. 9647–9655, 2018, doi: 10.1109/TPEL.2017.2787907.
[16] Y. Li, Y. Wang, Y. Guan, and D. Xu, “Design and optimization of high-gain bidirectional DC–DC converter for electric vehicles,” IEEE Trans. Power Electron., vol. 38, no. 9, 2023, doi: 10.1109/TPEL.2023.3285627.
[17] A. Samadian, S. H. Hosseini, M. Sabahi, and M. Maalandish, “A new coupled inductor nonisolated high step-up quasi Z-source DC–DC converter,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 5389–5397, 2020, doi: 10.1109/TIE.2019.2934067.
[18] Z. Wang, P. Wang, B. Li, X. Ma, and P. Wang, “A bidirectional DC–DC converter with high voltage conversion ratio and zero ripple current for battery energy storage system,” IEEE Trans. Power Electron., vol. 36, no. 7, pp. 8012–8027, 2021, doi: 10.1109/TPEL.2020.3048043.
[19] V. Marzang, S. M. Hashemzadeh, P. Alavi, A. Khoshkbar-Sadigh, S. H. Hosseini, and M. Z. Malik, “A modified triple-switch triple-mode high step-up DC–DC converter,” IEEE Trans. Ind. Electron., vol. 69, no. 8, pp. 8015–8027, 2022, doi: 10.1109/TIE.2021.3090706.
[20] M. F. Guepfrih, G. Waltrich, and T. B. Lazzarin, “High step-up DC-DC converter using built-in transformer voltage multiplier cell and dual boost concepts,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 9, no. 6, pp. 6700–6712, 2021, doi: 10.1109/JESTPE.2021.3063060.
[21] M. F. Guepfrih, G. Waltrich, and T. B. Lazzarin, “High step-up DC-DC converter using built-in transformer voltage multiplier cell and dual boost concepts,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 9, no. 6, pp. 6700–6712, 2021, doi: 10.1109/JESTPE.2021.3063060.
[22] M. Kumar, K. P. Panda, R. T. Naayagi, R. Thakur, and G. Panda, “A critical analysis of quadratic boost based high-gain converters for electric vehicle applications,” Sensors, vol. 24, p. 2186, 2024, doi: 10.3390/s24072186.
[23] S. Hasanpour, “A novel soft-switched trans-inverse ultra-high-gain DC/DC converter with low switch voltage stress,” Sci. Rep., 2025, doi: 10.1038/s41598-025-17301-w.
[24] Z. Gao, X. Hu, J. Gu, and C. Zhang, “Wide voltage gain bidirectional DC/DC converter based on switched-inductors for EV hybrid energy source systems,” J. Power Electron., 2024, doi: 10.1007/s43236-024-00966-3.
[25] A. Kumar, K. Shukla, and N. Gupta, “Cost-effective and efficient high-gain DC–DC converter for electric vehicle application,” Springer Proc., 2025, doi: 10.1007/978-981-96-5115-3_1.
[26] B. Zhu, S. Liu, D. M. Vilathgamuwa, and Y. Li, “High step-up SVMC-based DC/DC converter for offshore wind farms,” IET Power Electron., vol. 12, no. 6, pp. 1445–1454, 2019, doi: 10.1049/iet-pel.2018.5899.
[27] K. Kundanam, Y. Zhang, J. Liu, Z. Dong, and X. Li, “Quadratic flying-capacitor boost converter and comparative evaluation,” in Proc. IEEE Int. Future Energy Electron. Conf. (IFEEC - ECCE Asia), 2017, pp. 1314–1321, doi: 10.1109/IFEEC.2017.7992234.
[28] J. Leyva-Ramos, R. Mota-Varona, M. G. Ortiz-Lopez, L. H. Diaz-Saldierna, and D. Langarica-Cordoba, “Control strategy of a quadratic boost converter with voltage multiplier cell for high-voltage gain,” IEEE Trans. Ind. Electron., vol. 5, no. 4, pp. 2168–6777, 2017, doi: 10.1109/JESTPE.2017.2749311.
[29] M. Heydari, H. Khoramikia, and A. Fatemi, “High-voltage gain SEPIC-based DC–DC converter without coupled inductor for PV systems,” IET Power Electron., vol. 12, no. 8, pp. 2118–2127, 2019, doi: 10.1049/iet-pel.2018.5940.
[30] Y. Zhang, H. Liu, J. Li, M. Sumner, and C. Xia, “DC–DC boost converter with a wide input range and high voltage gain for fuel cell vehicles,” IEEE Trans. Power Electron., vol. 34, no. 5, pp. 4100–4111, 2019, doi: 10.1109/TPEL.2018.2858443.
[31] T. Jalilzadeh, N. Rostami, E. Babaei, and M. Maalandish, “Nonisolated topology for high step-up DC–DC converters,” IEEE J. Emerg. Sel. Topics Power Electron., 2018, doi: 10.1109/JESTPE.2018.2849096.
[32] G. G. Kumar, S. M. V. Krishna, S. Kumaravel, and E. Babaei, “Multi-stage DC–DC converter using active LC2D network with minimum component,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 68, no. 3, Mar. 2021, doi: 10.1109/TCSII.2020.3021609. | ||
|
آمار تعداد مشاهده مقاله: 12 تعداد دریافت فایل اصل مقاله: 10 |
||