
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,862 |
تعداد دریافت فایل اصل مقاله | 7,656,349 |
Ternary $(\sigma,\tau,\xi)$-derivations on Banach ternary algebras | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 3، دوره 5، 1 (Special Issue)، خرداد 2014، صفحه 23-35 اصل مقاله (421.21 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2014.112 | ||
نویسندگان | ||
M. Eshaghi Gordji* 1؛ F. Farrokhzad2؛ S.A.R. Hosseinioun3 | ||
1Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran. | ||
2Department of Mathematics, Shahid Beheshti University, Tehran, Iran. | ||
3Department of Mathematical Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA | ||
تاریخ دریافت: 28 مرداد 1392، تاریخ بازنگری: 15 شهریور 1392، تاریخ پذیرش: 23 شهریور 1392 | ||
چکیده | ||
Let $A$ be a Banach ternary algebra over a scalar field $\mathbb{R}$ or $\mathbb{C}$ and $X$ be a Banach ternary $A$-module. Let $\sigma, \tau$ and $\xi$ be linear mappings on $A$, a linear mapping $D : (A,[ ]_A) \to (X, [ ]_X)$ is called a ternary $(\sigma,\tau,\xi)$-derivation, if $$D([xyz]_A) = [D(x)\tau(y)\xi(z)]_X + [\sigma(x)D(y)\xi(z)]_X + [\sigma(x)\tau(y)D(z)]_X$$ for all $x,y, z \in A$. In this paper, we investigate ternary $(\sigma,\tau,\xi)$-derivation on Banach ternary algebras, associated with the following functional equation $$f(\frac{x + y + z}{4}) + f(\frac{3x - y - 4z}{4}) + f(\frac{4x + 3z}{4}) = 2f(x).$$ Moreover, we prove the generalized Ulam-Hyers stability of ternary $(\sigma,\tau,\xi)$-derivations on Banach ternary algebras. | ||
کلیدواژهها | ||
Banach ternary algebra؛ Banach ternary $A$-module؛ Ternary $(\sigma,\tau,\xi)$-derivation | ||
آمار تعداد مشاهده مقاله: 17,708 تعداد دریافت فایل اصل مقاله: 3,015 |