
تعداد نشریات | 21 |
تعداد شمارهها | 632 |
تعداد مقالات | 9,260 |
تعداد مشاهده مقاله | 67,743,654 |
تعداد دریافت فایل اصل مقاله | 8,157,600 |
Polarization constant $\mathcal{K}(n,X)=1$ for entire functions of exponential type | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 4، دوره 6، شماره 2، بهمن 2015، صفحه 35-45 اصل مقاله (406.11 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2015.252 | ||
نویسندگان | ||
A. Pappas* 1؛ P. Papadopoulos2؛ L. Athanasopoulou3 | ||
1Civil Engineering Department, School of Technological Applications, Piraeus University of Applied Sciences (Technological Education Institute of Piraeus), GR 11244, Egaleo, Athens, Greece | ||
2adepartment of electronics engineering, school of technological applications, technological educational institution (tei) of piraeus, gr 11244, egaleo, athens, Greece. | ||
3Department of Electronics Engineering, School of Technological Applications, Piraeus University of Applied Sciences (Technological Education Institute of Piraeus), GR 11244, Egaleo, Athens, Greece | ||
تاریخ دریافت: 15 آبان 1393، تاریخ بازنگری: 25 فروردین 1394، تاریخ پذیرش: 27 اردیبهشت 1394 | ||
چکیده | ||
In this paper we will prove that if $L$ is a continuous symmetric n-linear form on a Hilbert space and $\widehat{L}$ is the associated continuous n-homogeneous polynomial, then $||L||=||\widehat{L}||$. For the proof we are using a classical generalized inequality due to S. Bernstein for entire functions of exponential type. Furthermore we study the case that if X is a Banach space then we have that $$ |L|=|\widehat{L}|, \forall L \in{\mathcal{L}}^{s}(^{n}X). $$ If the previous relation holds for every $L \in {\mathcal{L}}^{s}\left(^{n}X\right)$, then spaces ${\mathcal{P}}\left(^{n}X\right)$ and $L \in {\mathcal{L}}^{s}(^{n}X)$ are isometric. We can also study the same problem using Fr$\acute{e}$chet derivative. | ||
کلیدواژهها | ||
Polarization constants؛ polynomials on Banach spaces؛ polarization formulas | ||
آمار تعداد مشاهده مقاله: 48,653 تعداد دریافت فایل اصل مقاله: 2,720 |