
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,852 |
تعداد دریافت فایل اصل مقاله | 7,656,347 |
New Hermite-Hadamard type inequalities on fractal set | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 62، دوره 12، شماره 1، مرداد 2021، صفحه 782-789 اصل مقاله (388.61 K) | ||
نوع مقاله: Review articles | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2018.12156.1611 | ||
نویسندگان | ||
Tuba Tunc* ؛ Huseyin Budak؛ Fuat Usta؛ Mehmet Zeki Sarikaya | ||
Department of Mathematics, Faculty of Science and Arts, Duzce University, Duzce, Turkey | ||
تاریخ دریافت: 18 اسفند 1395، تاریخ بازنگری: 13 اردیبهشت 1397، تاریخ پذیرش: 15 اردیبهشت 1397 | ||
چکیده | ||
In this study, we present the new Hermite-Hadamard type inequality for functions which are $h$-convex on fractal set $\mathbb{R}^{\alpha }$ $(0<\alpha \leq 1)$ of real line numbers. Then we provide the special cases of the result using different type of convex mappings. | ||
کلیدواژهها | ||
Hermite-Hadamard inequality؛ fractal set؛ h- convex function | ||
مراجع | ||
[1] H. Budak, M.Z. Sarikaya and E. Set, Generalized Ostrowski type inequalities for functions whose local fractional derivatives are generalized s-convex the second sense, J. Appl. Math. Comput. Mech. 15 (2016) 11–21. [2] G-S. Chen, Generalizations of Holder’s and some related integral inequalities on fractal space, J. Funct. Spac. Appl. 2013 (2013), Article ID 198405. [3] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. [4] S. Erden and M.Z. Sarikaya, Generalized Pompeiu type inequalities for local fractional integrals and its applications, Appl. Math. Comput. 274 (2016) 282–291. [5] A. Kılıcman, W. Saleh, Some generalized Hermite-Hadamard type integral inequalities for generalized s−convex functions on fractal sets, Adv. Diff. Equ. 2015 (2015), 15 pages. [6] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, 2006. [7] H. Mo, X Sui and D Yu, Generalized convex functions on fractal sets and two related inequalities, Abstr. Appl. Anal. 2014 (2014), Article ID 636751, 7 pages. [8] H. Mo and X. Sui, Generalized s-convex functions on fractal sets, Abstr. Appl. Anal. 2014 (2014), Article ID 254737, 8 pages. [9] M.A. Noor, K.I. Noor and M.U. Awan, A new Hermite-Hadamard type inequality for h-convex functions, Creat. Math. Inf. 24 (2015) 191–197. [10] J.E. Pecaric, F. Proschan and Y.L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992. [11] M.Z. Sarikaya and H. Budak, On Fejer type inequalities via local fractional integrals, J. Fract. Calc. Appl. 8 (2017) 59–77. [12] M.Z. Sarikaya, S. Erden and H. Budak, Some generalized Ostrowski type inequalities involving local fractional integrals and applications, Adv. Ineq. Appl. 2016 (2016), 6. [13] M. Z. Sarikaya, S. Erden and H. Budak, Some integral inequalities for local fractional integrals, Int. J. Anal. Appl. 14 (2017) 9–19. [14] M. Z Sarikaya, T. Tunc and H Budak, On generalized some integral inequalities for local fractional integrals, Appl. Math. Comput. 276 (2016) 316–323. [15] M.Z. Sarikaya and H. Budak, Generalized Ostrowski type inequalities for local fractional integrals, Proc. Amer. Math. Soc. 145 (2017) 1527–1538. [16] F. Usta, H. Budak and M.Z. Sarikaya Yang-Laplace transform method for local fractional Volterra and Abel’s integro-differential equations, ResearchGate Article, Available online at: https://www.researchgate.net/publication/316923150. [17] M. Vivas, J. Hernandez and N. Merentes, New Hermite-Hadamard and Jensen type inequalities for h-convex functions on fractal sets, Rev. Colom. Mat. 50 (2016) 145–164. [18] X-J. Yang, Local Fractional Functional Analysis and its Applications, Asian Academic, Publisher, Hong Kong, 2011. [19] X.-J. Yang, Advanced Local Fractional Calculus and its Applications, World Science Publisher, New York, London and Hong Kong, 2012. [20] X-J. Yang, D. Baleanu and H.M. Srivastava, Local Fractional Integral Transforms and Their Applications, Academic Press, Elsevier, 2015. [21] Y.-J. Yang, D. Baleanu and X.-J. Yang, Analysis of fractal wave equations by local fractional Fourier series method, Adv. Math. Phys. 2013 (2013), Article ID 632309, 1–6. [22] X-J. Yang, D. Baleanu and H.M. Srivastava, Local fractional similarity solution for the diffusion equation defined on Cantor sets, Appl. Math. Lett. 47 (2015) 54–60. [23] X-J. Yang, J.A. Tenreiro Machado and J. Hristov, Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow, Nonlinear Dyn. 84 (2016) 3–7. [24] X-J. Yang, J.A.T. Machado, C. Cattani and F. Gao, On a fractal LC-electric circuit modeled by local fractional calculus, Comm. Nonlinear Sci. Num. Simul. 47 (2017) 200–206. | ||
آمار تعداد مشاهده مقاله: 16,216 تعداد دریافت فایل اصل مقاله: 534 |