
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,747 |
تعداد دریافت فایل اصل مقاله | 7,656,162 |
Functionally closed sets and functionally convex sets in real Banach spaces | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 28، دوره 7، شماره 1، فروردین 2016، صفحه 289-294 اصل مقاله (336.81 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2015.340 | ||
نویسندگان | ||
Madjid Eshaghi1؛ Hamidreza Reisi Dezaki* 1؛ Alireza Moazzen2 | ||
1Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran | ||
2Kosar University of Bojnord, Bojnord, Iran | ||
تاریخ دریافت: 29 اردیبهشت 1394، تاریخ بازنگری: 15 مهر 1394، تاریخ پذیرش: 05 آذر 1394 | ||
چکیده | ||
Let $X$ be a real normed space, then $C(\subseteq X)$ is functionally convex (briefly, $F$-convex), if $T(C)\subseteq \Bbb R $ is convex for all bounded linear transformations $T\in B(X,R)$; and $K(\subseteq X)$ is functionally closed (briefly, $F$-closed), if $T(K)\subseteq \Bbb R $ is closed for all bounded linear transformations $T\in B(X,R)$. We improve the Krein-Milman theorem on finite dimensional spaces. We partially prove the Chebyshev 60 years old open problem. Finally, we introduce the notion of functionally convex functions. The function $f$ on $X$ is functionally convex (briefly, $F$-convex) if epi $f$ is a $F$-convex subset of $X\times \mathbb{R}$. We show that every function $f : (a,b)\longrightarrow \mathbb{R}$ which has no vertical asymptote is $F$-convex. | ||
کلیدواژهها | ||
Convex set؛ Chebyshev set؛ Krein-Milman theorem | ||
آمار تعداد مشاهده مقاله: 18,640 تعداد دریافت فایل اصل مقاله: 5,283 |