 
				| تعداد نشریات | 21 | 
| تعداد شمارهها | 663 | 
| تعداد مقالات | 9,692 | 
| تعداد مشاهده مقاله | 69,000,442 | 
| تعداد دریافت فایل اصل مقاله | 48,488,288 | 
| A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function | ||
| International Journal of Nonlinear Analysis and Applications | ||
| مقاله 1، دوره 7، شماره 2، اسفند 2016، صفحه 1-27 اصل مقاله (527.34 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22075/ijnaa.2016.375 | ||
| نویسندگان | ||
| Michael Th. Rassias* 1؛ Bicheng Yang2 | ||
| 1Institute of Mathematics, University of Zurich, CH-8057, Zurich, Switzerland \ & Institute for Advanced Study, Program in Interdisciplinary Studies, 1 Einstein Dr, Princeton, NJ 08540, USA | ||
| 2Department of Mathematics, Guangdong University of Education, Guangzhou, Guangdong 510303, P. R. China | ||
| تاریخ دریافت: 21 اردیبهشت 1394، تاریخ بازنگری: 20 دی 1394، تاریخ پذیرش: 07 اسفند 1394 | ||
| چکیده | ||
| By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the reverses and some particular cases are also considered. | ||
| کلیدواژهها | ||
| Hardy-Hilbert-type inequality؛ extended Riemann-zeta function؛ Hurwitz zeta function؛ Gamma function؛ weight function؛ equivalent form؛ operator | ||
| آمار تعداد مشاهده مقاله: 47,177 تعداد دریافت فایل اصل مقاله: 49,380 | ||