| تعداد نشریات | 21 |
| تعداد شمارهها | 663 |
| تعداد مقالات | 9,691 |
| تعداد مشاهده مقاله | 68,988,621 |
| تعداد دریافت فایل اصل مقاله | 48,481,754 |
On a class of nonlinear fractional Schrödinger-Poisson systems | ||
| International Journal of Nonlinear Analysis and Applications | ||
| مقاله 11، دوره 10، Special Issue ( Nonlinear Analysis in Engineering and Sciences)، اسفند 2019، صفحه 123-132 اصل مقاله (147.83 K) | ||
| نوع مقاله: Special issue editorial | ||
| شناسه دیجیتال (DOI): 10.22075/ijnaa.2019.4405 | ||
| نویسندگان | ||
| M. Soluki1؛ S.H. Rasouli* 2؛ G.A. Afrouzi1 | ||
| 1Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran | ||
| 2Department of Mathematics, Faculty of Basic Sciences, Babol (Noushirvani) University of Technology Babol, Iran | ||
| تاریخ دریافت: 16 اردیبهشت 1398، تاریخ بازنگری: 06 مرداد 1398، تاریخ پذیرش: 24 مرداد 1398 | ||
| چکیده | ||
| In this paper, we are concerned with the following fractional Schrödinger-Poisson system: $$\left\{ \begin{array}{ll} (-\Delta^s)u+V(x)u+\phi u=m(x)|u|^{q-2}|u|+f(x,u), & x\in\Omega, \\ (-\Delta^t)\phi=u^2, & x\in\Omega,\\ u=\phi=0, & x\in\partial\Omega \end{array} \right.$$ where $s,t \in (0,1], 2t + 4s > 3, 1 < q < 2$ and $\Omega$ is a bounded smooth domain of $\mathbb{R}^3$, and $f(x,u)$ is linearly bounded in $u$ at infinity. Under some assumptions on $m, V$ and $f$ we obtain the existence of non-trivial solutions with the help of the variational methods. | ||
| کلیدواژهها | ||
| Fractional Schrödinger-Poisson systems؛ Non-trivial solutions؛ Variational methods | ||
|
آمار تعداد مشاهده مقاله: 42,493 تعداد دریافت فایل اصل مقاله: 37,177 |
||