
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,805 |
تعداد دریافت فایل اصل مقاله | 7,656,333 |
Experimental Evaluation of Summer Thermal Comfort in Various Types of Sardab (Cellar): Underground Space in Iran Vernacular Houses | ||
Journal of Heat and Mass Transfer Research | ||
دوره 8، شماره 1 - شماره پیاپی 15، مرداد 2021، صفحه 1-11 اصل مقاله (1.5 M) | ||
نوع مقاله: Full Length Research Article | ||
شناسه دیجیتال (DOI): 10.22075/jhmtr.2020.19526.1271 | ||
نویسندگان | ||
Rouhollah Moosavi* 1؛ Roza Vakilinezhhad2 | ||
1Department of Mechanical Engineering, Yasouj University, Yasouj, Iran. | ||
2Department of Architecture, Faculty of Art and Architecture, Shiraz University, Shiraz, Iran | ||
تاریخ دریافت: 19 دی 1398، تاریخ بازنگری: 12 آذر 1399، تاریخ پذیرش: 12 آذر 1399 | ||
چکیده | ||
This article aims to evaluate the effect of three types of Sardab (Cellars) on thermal comfort conditions. Two vernacular buildings in Yazd have been selected as case studies. In the Rasoulian house, a sardab with a water pond has been defined as case A and a Sardab without pond has been chosen as case B. Case C is a Sardab without pond in Mortaz house. Using experimental data, environmental parameters were analyzed for a month in two consecutive years. Using measured data, the values for Predicted Mean Vote (PMV) and Predicted Percentage Dissatisfied (PPD) have been calculated. The results show a considerable reduction in the air temperature (up to 20℃) and an increase in the relative humidity of the air (up to 50%) in case A (the Sardab with pond). The sardabs without pond (Cases B and C) presented lower efficiencies. Variations in daily temperatures have been presented in three cases with ceilings elevated at different heights. While the sardab that is placed completely underground presented the lowest temperature, in two other sardabs, the average air temperature was 2-3 degrees higher. According to the results, in a hot and dry climate, application of all sardab types, either with or without a pond, elevated or underground, would improve the thermal comfort condition and the energy efficiency of buildings. | ||
کلیدواژهها | ||
Sardab؛ Cellar؛ passive cooling؛ thermal comfort؛ experimental study | ||
عنوان مقاله [English] | ||
ارزیابی میدانی شرایط آسایش حرارتی تابستان در انواع مختلف سرداب (زیرزمین): فضای زیرزمینی در خانه های بومی ایران | ||
چکیده [English] | ||
مقاله حاضر با هدف ارزیابی تاثیر سه نوع سرداب (زیرزمین) بر شرایط آسایش حرارتی تابستان در خانه های بومی شهر یزد انجام شده است. دو خانه رسولیان و خانه مرتاض به عنوان نمونه موردی انتخاب شده اند. در خانه رسولیان، سرداب با حوض به عنوان نمونه A و سرداب بدون حوض به عنوان نمونه B تعیین شده و نمونه C سردابی بدون حوض در خانه مرتاض است. با استفاده از اندازه گیری میدانی، پارامترهای محیطی برای یک ماه در دو سال متوالی اندازه گیری شده اند. بر اساس مقادیر داده های اندازه گیری شده، مقادیر رای میانگین پیشبینی شده (PMV) و درصد نارضایتی (PPD) محاسبه شده است. نتایج کاهش قابل توجه دمای هوا (تا 20 درجه سانتیگراد) و افزایش رطوبت (تا 50 درصد) را در نمونه A (سرداب با حوض) نشان میدهد. گرچه سردابهای بدون حوض (نمونه B و C) کارایی کمتری دارند. تغییرات دماهای روزانه در سه نمونه سرداب با ارتفاع سقفهای مختلف نشان میدهد، درحالیکه سردابی که کاملا زیر زمین واقع شده، کمترین دما را دارد، در دو سرداب دیگر میانگین دما 2-3 درجه بالاتر است. بر اساس نتایج بدست آمده، در اقلیم گرم و خشک، کاربرد انواع سرداب، با حوض و بدون حوض، با ارتفاع از زمین یا کاملا زیرزمین، سبب بهبود شرایط آسایش حرارتی و کارایی انرژی ساختمانها در تابستان میگردد. | ||
کلیدواژهها [English] | ||
سرداب, زیرزمین, سرمایش ایستا, آسایش حرارتی, اندازه گیری میدانی | ||
مراجع | ||
[1] C.A. Balaras, A.G. Gaglia, E. Georgopoulou, S. Mirasgedis, Y. Sarafidis, D.P. Lalas, European residential buildings and empirical assessment of the Hellenic building stock, energy consumption, emissions and potential energy savings, Build. Environ, 42(3), 1298-1314, (2007). [2] L. Gustavsson, R. Sathre, Variability in energy and carbon dioxide balances of wood and concrete building materials, Build. Environ, 41(7), 940-951, (2006). [3] R. Moosavi, F. Gheybi, Office Buildings Glass Facades Excitation under Hot and Dry Climates: A Numerical and Experimental Study, Iranian Journal of Energy, 20(4), 5-25, (2018). [4] L. Pérez-Lombard, J. Ortiz, C. Pout, A review on buildings energy consumption information, Energy and buildings, 40(3), 394-398, (2008). [5] M.O. Silvia, C.G. Ignacio, Comparison of hygro-thermal conditions in underground wine cellars from a Spanish area, Build. Environ, 40(10), 1384-1394, (2005). [6] S.A. Alkaff, S.C. Sim, M.N. Ervina Efzan, A review of underground building towards thermal energy efficiency and sustainable development, Renew. Sustain. Energy Rev, 60, 692-713, (2016). [7] S. Martín Ocaña, I.C. Guerrero, Comparison of 10 R. Moosavi / JHMTR 8 (2021) 1- 11 analytical and on site temperature results on Spanish traditional wine cellars, Appl. Therm. Eng. 26(7), 700-708, (2006). [8] F.R. Mazarrón, J. Cid-Falceto, I. Cañas, An assessment of using ground thermal inertia as passive thermal technique in the wine industry around the world, Appl. Therm. Eng. 33, 54-61, (2012). [9] F. Tinti, A. Barbaresi, S. Benni, D. Torreggiani, R. Bruno, P. Tassinari, Experimental analysis of thermal interaction between wine cellar and underground, Energy Build. 104, 275-286, (2015). [10] F. Tinti, A. Barbaresi, S. Benni, D. Torreggiani, R. Bruno, P. Tassinari, Experimental analysis of shallow underground temperature for the assessment of energy efficiency potential of underground wine cellars, Energy Build. 80, 451-460, (2014). [11] M. Casals, M. Gangolells, N. Forcada, M. Macarulla, A. Giretti, A breakdown of energy consumption in an underground station, Energy Build. 78, 89-97, (2014). [12] G. Scaglia, F. di Giorgio Martini, C. Maltese, L.M. Degrassi, Trattati di architettura ingegneria e arte militare, Art Bull, (1970). [13] S. Andolsun, C.H. Culp, J. Haberl, M.J. Witte, EnergyPlus vs. DOE-2.1e: The effect of ground-coupling on energy use of a code house with basement in a hot-humid climate, Energy Build. 43(7), 1663-1675, (2011). [14] K. Ip, A. Miller, Thermal behaviour of an earth-sheltered autonomous building - The Brighton Earthship, Renew. Energy. 34(9), 2037-2043, (2009). [15] C.A. Balaras, K. Droutsa, E. Dascalaki, S. Kontoyiannidis, Heating energy consumption and resulting environmental impact of European apartment buildings, Energy Build. 37(5), 429-442, (2005). [16] N.K. Garg, T. Oreszczyn, Energy efficiency in building envelopes through ground integration, Sol. Energy. 53(5), 427-430, (1994). [17] Q. de Jong van Lier, A. Durigon, Soil thermal diffusivity estimated from data of soil temperature and single soil component properties, Rev. Bras. Ciência Do Solo. 37(1), 106-112, (2013). [18] J.M.A. Márquez, M.Á.M. Bohórquez, S.G. Melgar, Ground thermal diffusivity calculation by direct soil temperature measurement. application to very low enthalpy geothermal energy systems, Sensors, 16(3), 306, (2016). [19] A.A. Al-Temeemi, D.J. Harris, A guideline for assessing the suitability of earth-sheltered mass-housing in hot-arid climates, Energy Build. 36(3), 251-260, (2004). [20] A. Buzăianu, I. Csáki, P. Moţoiu, G. Popescu, I. Thorbjornsson, K.R. Ragnarsodottir, S. Guðlaugsson, D. Goubmunson, Recent Advances of the Basic Concepts in Geothermal Turbines of Low and High Enthalpy, Adv. Mater. Res. 1114, 233-238, (2015). [21] C. Carmo, B. Elmegaard, M.P. Nielsen, N. Detlefsen, Empirical platform data analysis to investigate how heat pumps operate in real-life conditions, In Proceedings of the 24th Iir International Congress of Refrigeration (ICR2015), Yokohama, Japan, 16-22, (2015). [22] F. Droulia, S. Lykoudis, I. Tsiros, N. Alvertos, E. Akylas, I. Garofalakis, Ground temperature estimations using simplified analytical and semi-empirical approaches, Sol. Energy. 83(2), 211-219, (2009). [23] S. Graf, F. Lanzerath, A. Sapienza, A. Frazzica, A. Freni, A. Bardow, Prediction of SCP and COP for adsorption heat pumps and chillers by combining the large-temperature-jump method and dynamic modeling, Appl. Therm. Eng. 98, 900-909, (2016). [24] M.N. Bahadori, Passive Cooling Systems in Iranian Architecture, Sci. Am. 238(2), 144-155, (1978). [25] F. Soflaei, M. Shokouhian, W. Zhu, Socio-environmental sustainability in traditional courtyard houses of Iran and China, Renew. Sustain. Energy Rev. 69, 1147-1169, (2017). [26] M. Khalili, S. Amindeldar, Traditional solutions in low energy buildings of hot-arid regions of Iran, Sustain. Cities Soc. 13, 171-181, (2014). [27] M.N. Bahadori, F. Haghighat, Long-term storage of chilled water in cisterns in hot, arid regions, Build. Environ. 23(1), 29-37, (1988). [28] M.N. Bahadori, Natural production, storage, and utilization of ice in deep ponds for summer air conditioning, Sol. Energy. 23(1), 29-37, (1985). [29] H. Samsam-Khayani, M. R. Tavakoli, S. Mohammadshahi, M. Nili-Ahmadabadi, Numerical study of effects of Shavadoon connections (a vernacular architectural pattern) on improvement of natural ventilation, Tunnelling and Underground Space Technology, 82, 170-181, (2018). [30] A. Foruzanmehr, Basements of vernacular earth dwellings in Iran: prominent passive cooling systems or only storage spaces?, International Journal of Urban Sustainable Development, 7(2), 232-244, (2015). [31] F. A. Tafti, M. Rezaeian, S. E. Razavi, Sunken courtyards as educational environments: Occupant's perception and environmental R. Moosavi / JHMTR 8 (2021) 1- 11 11 satisfaction, Tunnelling and Underground Space Technology, 78, 124-134, (2018). [32] A. H. Jørgensen, Ice houses of Iran: where, how, why. Mazda Publishers, Costa Mesa, California, (2012). [33] R.K. Goel, B. Singh, J. Zhao, Underground infrastructures: planning, design, and construction. Butterworth-Heinemann, 2012. [34] A. Foruzanmehr, M. Vellinga, Vernacular architecture: Questions of comfort and practicability, Build. Res. Inf. 39(3), 274-285 (2011). [35] ISO, ISO 7730: Ergonomics of the thermal environment Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria, Management. (2005). [36] H. Saffari, R. Moosavi, E. Gholami, and N. M. Nouri, The effect of bubble on pressure drop reduction in helical coil, Experimental thermal and fluid science, 51, 251-256 (2013). [37] K. Javaherdeh, A. Vaisi, R. Moosavi, and M. Esmaeilpour, Experimental and numerical investigations on louvered fin-and-tube heat exchanger with variable geometrical parameters, Journal of Thermal Science and Engineering Applications, 9 (2), 024501, (2017). [38] A. Vaisi, R. Moosavi, M. Lashkari, and M. M. Soltani, Experimental investigation of perforated twisted tapes turbulator on thermal performance in double pipe heat exchangers, Chemical Engineering and Processing-Process Intensification, 154, 108028, (2020). [39] X. Ma, B. Cheng, G. Peng, W. Liu, A numerical simulation of transient heat flow in double layer wall sticking lining envelope of shallow earth sheltered buildings, in: Proc. 2009 Int. Jt. Conf. Comput. Sci. Optim. CSO 2009, (2009). | ||
آمار تعداد مشاهده مقاله: 885 تعداد دریافت فایل اصل مقاله: 804 |