
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,852 |
تعداد دریافت فایل اصل مقاله | 7,656,347 |
On $J$-class $C_0$-semigroups of operators | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 30، دوره 12، شماره 1، مرداد 2021، صفحه 397-403 اصل مقاله (419.06 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.4812 | ||
نویسندگان | ||
Mohammad Janfada* 1؛ Abolfazl Nezhadali Baghan2 | ||
1Department of Pure Mathematics, Ferdowsi University of Mashhad, International Campus, Mashhad, Iran | ||
2Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran | ||
تاریخ دریافت: 05 شهریور 1396، تاریخ بازنگری: 23 مهر 1396، تاریخ پذیرش: 07 آبان 1396 | ||
چکیده | ||
In this paper, locally topologically transitive (or J-class) $C_0$-semigroups of operators on Banach spaces are studied. Some similarity and differences of locally transitivity and hypercyclicity of $C_0$-semigroups are investigated. Next the Kato's limit of a sequence of $C_0$-semigroups are considered and their locally transitivity relations are studied. | ||
کلیدواژهها | ||
Hypercyclic $C_0$-semigroup؛ J-class $C_0$-semigroup؛ approximation in the sense of Kato | ||
مراجع | ||
[1] T. Bermudez, A. Bonilla and A. Martin´on, On the existence of chaotic and hyper cyclic semigroups on Banach spaces, Proc. Amer. Math. Soc. 131(8) (2003) 2435–2441. [2] T. Berm´urdez, A. Bonilla, J. A. Conejero and A. Peris, Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces, Studia Math. 170(1) (2005) 57–75. [3] G. Costakis and A. Manoussos, J-class weighted shifts on the space of bounded sequences of complex numbers, Integral Equ. Oper. Theory 62 (2008) 149–158. [4] G. Costakis and A. Manoussos, J-class operators and hypercyclicity, J. Operator Theory, 67 (2012) 101–119. [5] R. DeLaubenfels, H. Emamirad and V. Protopopescu, Linear chaos and approximation, J. Approx. Theory 105(1) (2000) 176–187. [6] W. Desch, W. Schappacher and G.F. Webb, Hypercyclic and chaotic semigroups of linear operators, Ergodic Theory Dynam. Syst. 17 (1997) 793–819. [7] H. Emamirad, Hypercyclicity in the scattering theory for linear transport equation, Trans. Amer. Math. Soc. 350 (1998) 3707–3716. [8] K.J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000. [9] R. Gethner and J.H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100(2) (1987) 281–288. [10] T. Kalmes, On chaotic C0-semigroups and infinitely regular hyper cyclic vectors, Proc. Amer. Math. Soc. 134 (2006) 2997–3002. [11] T. Kalmes, Hypercyclic, Mixing, and Chaotic C0-Semigroups, Ph. D. Thesis, Trier University, 2006. [12] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin-New York, 1966. [13] C. Kitai, Invariant closed sets for linear operators, Ph. D. Thesis, University of Toronto, 1982. [14] A.B. Nasseri, J-class Operators on Certain Banach Spaces, Ph. D. Thesis, Dortmund University, 2013. [15] A.B. Nasseri, On the existence of J-class operators on Banach spaces, Proc. Amer. Math. Soc. 140 (2012) 3549–3555. [16] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1992. [17] V. Protopopescu and Y. Azmy, Topological chaos for a class of linear models, Math. Models Methods Appl. Sci. 2 (1992) 79–90. [18] S. Rolewicz, On orbits of elements, Studia Math. 32 (1969) 17–22. [19] G. Tian and B. Hou, Limits of J-class operators, Proc. Amer. Math. Soc. 142(5) (2014) 1663–1667. | ||
آمار تعداد مشاهده مقاله: 15,581 تعداد دریافت فایل اصل مقاله: 422 |