
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,777 |
تعداد دریافت فایل اصل مقاله | 7,656,172 |
Existence theory for higher-order nonlinear ordinary differential equations with nonlocal Stieltjes boundary conditions | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 31، دوره 12، شماره 1، مرداد 2021، صفحه 405-417 اصل مقاله (418.78 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.4813 | ||
نویسندگان | ||
Bashir Ahmad* 1؛ Ahmed Alsaedi2؛ Nada Al-Malki2 | ||
1Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia | ||
2Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia | ||
تاریخ دریافت: 19 مهر 1396، تاریخ بازنگری: 20 آبان 1398، تاریخ پذیرش: 06 بهمن 1398 | ||
چکیده | ||
In this paper, we develop the existence theory for some boundary value problems of nonlinear $nth$-order ordinary differential equations supplemented with nonlocal Stieltjes boundary conditions. Our results are based on some standard theorems of fixed point theory and are well illustrated with the aid of examples. | ||
کلیدواژهها | ||
higher-order differential equations؛ Stieltjes؛ nonlocal boundary conditions؛ fixed point | ||
مراجع | ||
[1] M. Gregus, F. Neumann and F.M. Arscott, Three-point boundary value problems in differential equations, Proc. London Math. Soc. 3 (1964) 459–470. [2] A.V. Bicadze and A.A. Samarskii, Some elementary generalizations of linear elliptic boundary value problems (Russian), Anal. Dokl. Akad. Nauk SSSR, 185 (1969) 739–740. [3] V.A. Il’in and E.I. Moiseev, A nonlocal boundary value problem of the first kind for the Sturm-Liouville operator in differential and difference interpretations (Russian), Differentsial’nye Uravneniya 23 (1987) 1198–1207. [4] J. Andres, A four-point boundary value problem for the second-order ordinary differential equations, Arch. Math. (Basel) 53 (1989) 384–389. [5] C.P. Gupta, Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equations, J. Math. Anal. Appl. 168 (1998), 540–551. [6] P.W. Eloe and B. Ahmad, Positive solutions of a nonlinear nth order boundary value problem with nonlocal conditions, Appl. Math. Lett. 18 (2005) 521-527. [7] S. Clark and J. Henderson, Uniqueness implies existence and uniqueness criterion for non-local boundary value problems for third-order differential equations, Proc. Amer. Math. Soc. 134 (2006), 3363–3372. [8] J.R.L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: A unified approach, J. London Math. Soc. 74 (2006) 673–693. [9] J.R. Graef, J.R.L. Webb, Third order boundary value problems with nonlocal boundary conditions, Nonlinear Anal. 71 (2009) 1542–1551. [10] Y. Sun, L. Liu, J. Zhang and R.P. Agarwal, Positive solutions of singular three-point boundary value problems for second-order differential equations, J. Comput. Appl. Math. 230 (2009) 738–750. [11] F.T. Akyildiz, H. Bellout, K. Vajravelu and R.A. Van Gorder, Existence results for third order nonlinear boundary value problems arising in nano boundary layer fluid flows over-stretching surfaces, Nonlinear Anal. Real World Appl. 12 (2011) 2919–2930. [12] J.R. Graef, L. Kong, Q. Kong and M. Wang, Uniqueness and parameter dependence of positive solutions to higher order boundary value problems with fractional q-derivatives, J. Appl. Anal. Comput. 3 (2013) 21–35. [13] G. Infante, Eigenvalues and positive solutions of ODEs involving integral boundary conditions, Discrete Contin. Dyn. Syst. (2005) 436–442. [14] Z. Yang, Positive solutions of a second order integral boundary value problem, J. Math. Anal. Appl. 321 (2006), 751–765. [15] B. Ahmad and A. Alsaedi, Existence of approximate solutions of the forced Duffing equation with discontinuous type integral boundary conditions, Nonlinear Anal. Real World Appl. 10 (2009), 358–367. [16] A. Boucherif, Second-order boundary value problems with integral boundary conditions, Nonlinear Anal. 70 (2009) 364–371. [17] B. Ahmad, S.K. Ntouyas, H.H. Alsulami, Existence results for n-th order multipoint integral boundary-value problems of differential inclusion, Electron. J. Differential Equations (2013) No. 203, 13. [18] J. Xu, D. O’Regan and Z. Yang, Positive solutions for a nth-order impulsive differential equation with integral boundary conditions, Differ. Equ. Dyn. Syst. 22 (2014) 427–439. [19] Y. Li and H. Zhang, Positive solutions for a nonlinear higher order differential system with coupled integral boundary conditions, J. Appl. Math. (2014) Art. ID 901094, 7. [20] J. Henderson, Smoothness of solutions with respect to multi-strip integral boundary conditions for nth order ordinary differential equations, Nonlinear Anal. Model. Control 19 (2014) 396–412. [21] I.Y. Karaca and F.T. Fen, Positive solutions of nth-order boundary value problems with integral boundary conditions, Math. Model. Anal. 20 (2015) 188–204. [22] W.M. Whyburn, Differential equations with general boundary conditions, Bull. Amer. Math. Soc. 48 (1942) 692–704. [23] R. Conti, Recent trends in the theory of boundary value problems for ordinary differential equations, Boll. Un. Mat. Ital. 22 (1967) 135–1788. [24] J.R.L. Webb, Nonlocal conjugate type boundary value problems of higher order, Nonlinear Anal. 71 (2009) 1933–1940. [25] J.R.L. Webb, Positive solutions of some higher order nonlocal boundary value problems, Electron. J. Qual. Theory Differ. Equ. (2009), Special Edition I, No. 29, 15. [26] J.R.L. Webb and G. Infante, Non-local boundary value problems of arbitrary order, J. Lond. Math. Soc. 79 (2009)238–258. [27] J.R.L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems involving integral conditions, NoDEA Nonlinear Differential Equations Appl. 15 (2008) 45–67. [28] Y. Wang, L. Liu, Y. Wu, Positive solutions for a nonlocal fractional differential equation, Nonlinear Anal. 74 (2011) 3599–3605. [29] X. Zhang and Y. Han, Existence and uniqueness of positive solutions for higher order nonlocal fractional differential equations, Appl. Math. Lett. 25 (2012) 555–560. [30] B. Ahmad and S.K. Ntouyas, Existence results for fractional differential inclusions arising from real estate asset securitization and HIV models, Adv. Difference Equ. 2013 (2013) 216, 15. | ||
آمار تعداد مشاهده مقاله: 15,567 تعداد دریافت فایل اصل مقاله: 573 |