
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,717 |
تعداد دریافت فایل اصل مقاله | 7,656,151 |
E-Bayesian estimation of parameters of inverse Weibull distribution based on a unified hybrid censoring scheme | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 35، دوره 12، شماره 1، مرداد 2021، صفحه 461-471 اصل مقاله (431.04 K) | ||
نوع مقاله: Review articles | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.4825 | ||
نویسندگان | ||
Shahram Yaghoubzadeh Shahrestani1؛ Reza Zarei2؛ Parviz Malekzadeh* 3 | ||
1Department of Statistics, Payame Noor University, P. O. Box 19395-4697, Tehran, Iran | ||
2Department of Statistics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran | ||
3Department of Statistics, Faculty of Mathematics, Statistics and Computer Science, Semnan University, Semnan, Iran | ||
تاریخ دریافت: 23 اردیبهشت 1399، تاریخ بازنگری: 30 دی 1399، تاریخ پذیرش: 14 بهمن 1399 | ||
چکیده | ||
The combination of generalization Type-I hybrid censoring and generalization Type-II hybrid censoring schemes create a new censoring called a unified hybrid censoring scheme. Therefore, in this study, the E-Bayesian estimation of parameters of the inverse Weibull distribution is obtained under the unified hybrid censoring scheme, and the efficiency of the proposed method was compared with the Bayesian estimator using Monte Carlo simulation and a real data set. | ||
کلیدواژهها | ||
E-Bayesian estimation؛ Unified hybrid censoring scheme؛ Inverse Weibull distribution؛ LINEX loss function | ||
مراجع | ||
[1] N. Balakrishnan, A. Rasouli and N.S. Farsipour, Exact likelihood inference based on a unified hybrid censored sample from the exponential distribution, J. Stat. Comput. Simul. 78 (2008) 475–488. [2] R. Calabria and G. Pulcini, Bayes 2-sample prediction for the inverse Weibull distribution, Commun. Stat. Theory Methods. 23 (1994) 1811–1824. [3] B. Chandrasekhar, A. Childs and N. Balakrishnan, Exact Likelihood Inference for the Exponential distribution under Generalized Type-I and Type-II Hybrid Censoring, Nav. Res. Logist. 51 (2004) 994–1004. [4] A. Childs, B. Chandrasekhar, N. Balakrishnan and D. Kundu, Exact Likelihood Inference Based on Type-I and Type-II Hybrid Censored Samples from the Exponential distribution, Ann. Inst. Stat. Math. 55 (2003) 319–330. [5] P. Congdon, Bayesian Statistical Modeling, Wiley, NewYork, 2001. [6] B. Epstein, Truncated life tests in the exponential case, Ann. Math. Stat. 25 (1954) 555–564. [7] P. Erto and M. Rapone, Non-informative and practical Bayesian confidence bounds for reliable life in the Weibull model, Reliab. Eng. 7 (1984) 181–191. [8] M.E. Flygare and J.A. Buckwalter, Maximum likelihood estimation for the two-parameter Weibull distribution based on interval data, IEEE Trans. Reliab. 34 (2008) 57-60. [9] C.B. Guure, N.A. Ibrahim, and A.M. Al-Omari, Bayesian estimation of two-parameter Weibull distribution using extension of Jeffreys’ prior information with three loss functions, Math. Probl. Eng. 2012 (2012) Article ID 589640,1-13. [10] M. Han, The structure of hierarchical prior distribution and its applications, Chinese. Oper. Res. Manage. Sci. 63 (1997) 31–40. [11] M. Han, E-Bayesian estimation and hierarchical Bayesian estimation of failure rate, Appl. Math. Model. 33 (2009) 1915–1922. [12] M. Han, E-Bayesian estimation of the reliability derived from Binomial distribution, Appl. Math. Model. 35 (2011) 2419–2424. [13] M. Han, The E-Bayesian and hierarchical Bayesian estimations for the system reliability parameter, Commun. Stat. Theory Methods. 46 (2017) 1606–1620. [14] Z.F. Jaheen and H.M. Okasha, E-Bayesian estimation for the Burr type XII model based on type-II censoring, Appl. Math. Model. 35 (2011) 4730–4737. [15] M.S. Khan, G.R. Pasha, and A.H. Pasha, Theoretical analysis of inverse Weibull distribution, WSEAS Trans. Math. 7 (2008) 30–38. [16] S.J. Sanjay Kumar Singh, U. Umesh Singh and D. Kumar, Bayesian estimation of parameters of inverse Weibull distribution, J. Appl. Stat. 40 (2013) 1597–1607. [17] D.V. Lindley and A.F. Smith, Bayes estimation for the linear model, J. R. Stat. Soc. Series B Stat. Methodol. 34 (1972) 141. [18] D.N.P. Murthy, M. Xie and R. Jiang, Weibull Models, Wiley, New York, 2004. [19] W. Nelson, Applied Lifetime Data Analysis, Wiley, New York, 1982. [20] S. Shafiei, S. Darijani and H. Saboori, InverseWeibull power series distributions: properties and applications, J. Stat. Comput. Simul. 86 (2016) 1069–1094. [21] S.M. Taheri, and R. Zarei, Bayesian system reliability assessment under the vague environment, Appl. Soft Comput. 11 (2011) 1614–1622. [22] H.R. Varian, A Bayesian approach to real estate assessment, S.E. Fienberg and A. Zellner (eds.) Studies in Bayesian Econometrics and Statistics in Honor of Leonard J. Savage. North-Holland: Amsterdam, (1975) 195-208. [23] W.H.E. Von Alven, Reliability Engineering by ARINC, Prentice Hall, Englewood Cliffs, New Jersey, 1964. [24] J. Wang, D. Li and D. Chen, E-Bayesian Estimation and Hierarchical Bayesian Estimation of the System Reliability Parameter, Syst. Eng. Proc. 3 (2012) 282-289. [25] F. Yousefzadeh, E-Bayesian and hierarchical Bayesian estimations for the system reliability parameter based on asymmetric loss function, Commun. Stat. Theory Meth. 46 (2017) 1–8. [26] S.S. Yaghoobzadeh, Estimating E-bayesian and hierarchical Bayesian of the scalar parameter of Gompertz distribution under type II censoring schemes based on fuzzy data, Commun. Stat. Theory Meth. 48 (2019) 831–840. [27] R. Zarei, M. Amini, S.M. Taheri, and A.H. Rezaei, Bayesian estimation based on vague lifetime data, Soft Comput. 16 (2012) 165-174. | ||
آمار تعداد مشاهده مقاله: 15,829 تعداد دریافت فایل اصل مقاله: 598 |