
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,981 |
تعداد دریافت فایل اصل مقاله | 7,656,415 |
Stability of fuzzy orthogonally $*$-$n$-derivation in orthogonally fuzzy $C^*$-algebras | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 41، دوره 12، شماره 1، مرداد 2021، صفحه 533-540 اصل مقاله (392.73 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.4835 | ||
نویسندگان | ||
Najmeh Ansari1؛ Mohammad Hadi Hooshmand* 1؛ Madjid Eshaghi Gordji2؛ Khadijeh Jahedi1 | ||
1Department of Mathematics, Shiraz Branch, Islamic Azad University, Shiraz, Iran | ||
2Department of Mathematics, Semnan University P.O. Box 35195-363, Semnan, Iran | ||
تاریخ دریافت: 16 فروردین 1399، تاریخ بازنگری: 07 مهر 1399، تاریخ پذیرش: 18 بهمن 1399 | ||
چکیده | ||
In this paper, using fixed point methods, we prove the fuzzy orthogonally $*$-$n$-derivation on orthogonally fuzzy $C^*$-algebra for the functional equation \begin{align*} \begin{split} f(\frac{\mu x+\mu y}{2}+\mu w)+f(\frac{\mu x+\mu w}{2}+\mu y)+f(\frac{\mu y+\mu w}{2}+\mu x) =2\mu f(x)-2\mu f(y)-2\mu f(w). \end{split} \end{align*} | ||
کلیدواژهها | ||
Stability؛ Fixed point approach؛ $*$-$n$-derivation, Fuzzy $C^*$-algebra | ||
مراجع | ||
[1] R.P. Agarwal, Y.J. Cho, R. Saadati and S. Wang, Nonlinear L-fuzzy stability of cubic functional equations, J. Inequal. Appl. 2012 (2012) 1–19. [2] A. Bahraini, G. Askari, M. Eshaghi Gordji, et al. Stability and hyperstability of orthogonally ∗-m-homomorphisms in orthogonally Lie C∗-algebras: A fixed point approach, J. Fixed Point Theory Appl. 20 (2018) 1–12. [3] T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (2003) 687–705. [4] M. Eshaghi-Gordji and S. Abbaszadeh, Stability of Cauchy-Jensen inequalities in fuzzy Banach spaces, Appl. Comput. Math. 11 (2012) 27–36. [5] M. Eshaghi Gordji, G. Askari, N. Ansari, G. A. Anastassiou and C. Park, Stability and hyperstability of generalized orthogonally quadratic ternary homomorphisms in non-Archimedean ternary Banach algebras: A fixed point approach, J. Comput. Anal. Appl. 21 (2016) 1–6. [6] M. Eshaghi Gordji, M. Ramezani, M. De La Sen and Y.J. Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theory 18 (2017) 569–578. [7] C. Felbin, Finite-dimensional fuzzy normed linear space, Fuzzy Sets Syst. 48 (1992) 239–248. [8] P. Gavruta and L. Gavruta, A new method for the generalized Hyers-Ulam-Rassias stability, Int. J. Nonlinear Anal. Appl. 1 (2010) 11–18. [9] R. Gholami, G. Askari and M. Eshaghi Gordji, Stability and hyperstability of orthogonally ring ∗-n-derivations and orthogonally ring ∗-n-homomorphisms on C∗-algebras, J. Linear Topol. Alg. 7 (2018) 109–119. [10] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941) 222–224. [11] B. Margolis and J.B. Diaz, A fixed point theorem of the alternative for contractions on the generalized complete metric space, Bull. Amer. Math. Soc. 126 (1968) 305–309. [12] D. Mihet, V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343 (2008) 567–572. [13] A.K. Mirmostafaee, M. Mirzavaziri and M.S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets Syst. 159 (2008) 730–738. [14] A.K. Mirmostafaee and M.S. Moslehian, Fuzzy approximately cubic mappings, Inf. Sci. 178 (2008) 3791–3798. [15] C. Park, Lie ∗-homomorphism between Lie C∗-algebra and Lie ∗-derivation on Lie C∗-algebra, J. Math. Anal. Appl. 15 (2004) 419–434. [16] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003) 91–96.
[18] D. Shin, C. Park and Sh. Farhadabadi, On the superstability of ternary Jordan C∗-homomorphisms, J. Comput. Anal. Appl. 16 (2014) 964–973. [19] R. Thakur and S.K. Samanta, Fuzzy Banach algebra with Felbin’s type fuzzy norm, J. Fuzzy Math. 18 (2011) 943–954. [20] S.M. Ulam, Problems in Modern Mathematics, Chapter VI, science Editions., Wiley, New York, 1964. | ||
آمار تعداد مشاهده مقاله: 15,535 تعداد دریافت فایل اصل مقاله: 543 |