
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,964 |
تعداد دریافت فایل اصل مقاله | 7,656,405 |
Gr$\ddot{u}$ss type integral inequalities for a new class of $k$-fractional integrals | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 42، دوره 12، شماره 1، مرداد 2021، صفحه 541-554 اصل مقاله (435.88 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.4836 | ||
نویسندگان | ||
Sidra Habib1؛ Ghulam Farid* 2؛ Shahid Mubeen3 | ||
1Department of Mathematics, G.C. University Faisalabad, Faisalabad, Pakistan | ||
2Department of Mathematics, COMSATS University Islamabad, Attock Campus, Pakistan | ||
3Department of Mathematics, University of Sargodha, Sargodha, Pakistan | ||
تاریخ دریافت: 07 خرداد 1397، تاریخ بازنگری: 20 آبان 1398، تاریخ پذیرش: 17 بهمن 1398 | ||
چکیده | ||
The main aim of this research article is to present the generalized $k$-fractional conformable integrals and an improved version of Gr$\ddot{u}$ss integral inequality via the fractional conformable integral in status of a new parameter $k>0$. Here for establishing Gr$\ddot{u}$ss inequality in fractional calculus the classical method of proof has been adopted also related results with Gr$\ddot{u}$ss inequality have been discussed. This work contributes in the current research by providing mathematical results along with their verifications. | ||
کلیدواژهها | ||
$k$-fractional conformable integrals؛ Fractional integral inequalities؛ Gr$\ddot{u}$ss inequality | ||
مراجع | ||
[1] G. Abbas, K.A. Khan, G. Farid and A. Ur Rehman, Generalizations of some fractional integral inequalities via generalized Mittag-Leffler function, J. Inequal. Appl. 2017 (2017) 121. [2] G. Abbas and G. Farid, Some integral inequalities for m-convex functions via generalized fractional integral operator containing generalized Mittag-Leffler function, Cogent Math. 3 (2016) 1269589. [3] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279 (2015) 57-66. [4] P. Agarwal, S. Salahshour, S.K. Ntouyas, and J. Tariboon, Certain inequalities involving generalized Erdelyi Kober fractional q-integral operators, Sci. World J. 2014 (2014) Article ID 174126, 11 pages. [5] W. Ayub, G. Farid, and A. Ur Rehman, Generalization of the Fejer-Hadamard type inequalities for p-convex functions via k-fractional integrals, Commun. Math. Model. Appl. 2(3) (2017) 1-15. [6] E. Akin, S. Asliyuce, A.F. Guvenilir, and B. Kaymakcalan, Discrete Gruss type inequality on fractional calculus, J. Inequal. Appl. 2015 (2015) 174. [7] D. Baleanu and A. Agarwal, Certain inequalities involving the fractional q-integral operators, Abstr. Appl. Anal. 2014 (2014) 10 pages. [8] J. Choi and P. Agarwal, Some new Saigo type fractional integral inequalities and their q-analogues. Abstr. Appl. Anal. 2014 (2014) 11 pages. [9] J. Choi, D. Ritelli, and P. Agarwal, Some new inequalities involving generalized Erdelyi-Kober fractional q-integral operator, Appl. Math. Sci. 9 (2015) 3577-3591. [10] F. Chen, A note on Hermite-Hadamard inequalities for products of convex functions via Riemann-Liouville fractional integrals, Ital. J. Pure Appl. Math. 2014 (2014) 299-306. [11] S.S. Dragomir, A generalization of Gruss inequality in inner product spaces and applications, J. Math. Anal. Appl. 237 (1999) 74-82. [12] R. Diaz and E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat. 15 (2007) 179-192. [13] Z. Dahmani, About some integral inequalities using Riemann-Liouville integrals, Gen. Math. 20 (2012) 63-69. [14] N. Elezovic, L.J. Marangunic, and J. Pecaric, Some improvements of Gruss type inequality, J. Math. Ineq. 1(3) (2007) 425-436. [15] G. Farid and A. Ur Rehman, On Chebyshev functional and Ostrowski-Gruss type inequalities for two coordinates. Int. J. Anal. App. 12(2) (2016) 180-187. [16] G. Farid, S. Rafique, and A. Ur Rehman, More on Ostrowski and Ostrowski-Gruss type inequalities, Commun. Optim. Theory 2017 (2017) 9 pages. [17] G. Gruss, Uber das maximum des absoluten Betrages 1 b−a R b af(x)g(x)dx −1 (b−a) 2 R b a f(x)dx 1 b−a R b a g(x)dx, Math. Z. 39 (1935) 215-226. [18] F. Jarad, E. Ugurlu, T. Abdeljawad, and D. Baleanu, On a new class of fractional operators, Adv. Difference Equ. 1 (2017) 247. [19] E. Kacar and H. Yildirim, Gruss type integral inequalities for generalized Riemann-Liouville fractional integrals, Int. J. Pure Appl. Math. 101 (2015) 55-70. [20] V. Krasniqi, Inequalities and monotonicity for the ration of k-gamma functions. Sci. Magna. 6 (2010 ) 40-45. [21] C.G. Kokologiannaki and V. Krasniqi, Some properties of the k-gamma function, Le Math. 68 (2013) 13-22. [22] X. Li, R.N. Mohapatra, and R.S. Rodriguez, Gruss-type inequalities, J. Math. Anal. Appl. 267 (2002) 434-443. [23] Y. Liao, J. Deng, and J. Wang, Riemann-Liouville fractional Hermite-Hadamard inequalities. Part I. for once differentiable geometric-arithmetically s-convex functions, J. Inequal. Appl. 2013 (2013) 443. [24] X. Liu, L. Zhang, P. Agarwal, and G. Wang, On some new integral inequalities of Gronwall-Bellman-Bihari type with delay for discontinuous functions and their applications, Indag. Math. 27(1) (2016) 1-10. [25] S. Mubeen and G.M. Habibullah, k-fractional integrals and application, Int. J. Contemp. Math. Sci. 7 (2012) 89-94. [26] J. Park, Some integral inequalities for convex functions via Riemann-Liouville integrals, Appl. Math. Sci. 9 (2015) 1341-1353. [27] B.G. Pachpatte, On multidimensional Gruss type inequalities, J. Inequal. Pure Appl. Math. 3 (2002) 1-15. [28] L.G. Romero, L.L. Luque, G.A. Dorrego, and R.A. Cerutti, On the k-Riemann-Liouville fractional derivative, Int. J. Contemp. Math. Sci. 8 (2013) 41-51. [29] M.Z. Sarikaya, H. Filiz, and M.E. Kiris, On some generalized integral inequalities for Riemann-Liouville fractional integrals, Filomat 29(6) (2015) 1307-1314. [30] M.Z. Sarikaya and A. Karaca, On the k-Riemann-Liouville fractional integral and applications. Int. J. Math. Stat. 1 (2014) 033-043. [31] M.Z. Sarikaya, Z. Dahmani, M.E. Kiris, and F. Ahmad, (k, s)-Riemann-Liouville fractional integral and applications, Hacet. J. Math. Stat. 45(1) (2016) 77–89. [32] J. Tariboon, S.K. Ntouyas, and W. Sudsutad, Some new Riemann-Liouville fractional integral inequalities, Int. J. Math. Math. Sci. 2014 (2014), 6 pages. [33] T. Tunc, On new inequalities for h-convex functions via Riemann-Liouville fractional integration, Filomat 27(4) (2013) 559-565. [34] T. Tunc, F. Usta, H. Budak, and M.Z. Sarikaya, On Gruss type inequalities utilizing generalized fractional integral operators, AIP Conf. Proc.1833 (2017) 020045. [35] F. Usta and M.Z. Sarkaya, Explicit bounds on certain integral inequalities via conformable fractional calculus, Cogent Math. 4 (2017) 1277505. [36] F. Usta, H. Budak, and M.Z. Sarkaya, On Chebychev type inequalities for fractional integral operators, AIP Conf. Proc. 1833 (2017) 020045. [37] F. Usta and M.Z. Sarkaya, Some improvements of conformable fractional integral inequalities, Int. J. Anal. Appl. 14 (2017) 162-166. [38] F. Usta and M.Z. Sarkaya, On generalization conformable fractional integral inequalities, Filomat 32(16) (2018) 5519-5526. [39] G. Wang, P. Agarwal and M. Chand, Certain Gruss type inequalities involving the generalized fractional integral operator, J. Inequal. Appl. 2014 (2014) 147. [40] A. Waheed, G. Farid, A. Ur Rehman and W. Ayub, k-fractional integral inequalities for harmonically convex functions via Caputo k-fractional derivatives, Bull. Math. Anal. Appl. 10 (2018) 55–67. | ||
آمار تعداد مشاهده مقاله: 15,745 تعداد دریافت فایل اصل مقاله: 474 |