
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,809 |
تعداد دریافت فایل اصل مقاله | 7,656,333 |
ارایه یک مدل هوشمند قطعهبندی مبتنی بر منطق فازی و تبدیل موجک گسسته در تصاویر دیجیتالی جهت شناسایی سرطان معده | ||
مدل سازی در مهندسی | ||
دوره 18، شماره 63، دی 1399، صفحه 131-150 اصل مقاله (2.41 M) | ||
نوع مقاله: مقاله برق | ||
شناسه دیجیتال (DOI): 10.22075/jme.2020.18290.1750 | ||
نویسندگان | ||
پانیذ تیموری1؛ مهدی مزینانی* 1؛ راحیل حسینی2 | ||
1گروه مهندسی برق، واحد شهرقدس، دانشگاه آزاد اسلامی، تهران، ایران | ||
2گروه مهندسی کامپیوتر، دانشگاه آزاد اسلامی واحد شهر قدس، تهران، ایران | ||
تاریخ دریافت: 25 دی 1398، تاریخ بازنگری: 15 مرداد 1399، تاریخ پذیرش: 11 آبان 1399 | ||
چکیده | ||
سرطان معده در ایران اولین عامل و در سطح دنیا پنجمین عامل پیشتاز سرطان میباشد. اگر این بیماری در مراحل اولیه تشخیص داده شود، احتمال درمان بیشتر و هزینههای آن کاهش چشمگیری خواهد داشت. به دلیل پیچیدگی تصاویر پاتولوژیستی و چالشهای اساسی موجود در این تصاویر نظیر کنتراست ضعیف بین سلولها، همپوشانی سلولها و تناقض در رنگآمیزی بافت، فرایند تشخیص این نوع بیماری با مشکل روبرو میشود؛ بنابراین در این پژوهش، مدل هوشمند جدیدی جهت حل این مشکلات ارائه گردیده است؛ به گونهای که ابتدا از الگوریتمی مبتنی بر کلاه بالا به پایین جهت بهبود کیفیت تصویر بهره گرفته شده و سپس با استفاده از روشهای خوشهبندی فازی، تبدیل موجک گسسته، رشد منطقه و مکانیزم رایگیری جهت تشخیص سلولها اقدام میشود. سپس با کمک یک روش مبتنی بر عملیات مورفولوژی پیشرفته، سلولهای دارای همپوشانی از یکدیگر جدا میشوند و در نهایت ویژگیهای سلول، استخراج و به کمک الگوریتم ماشینبردار پشتیبان با کرنل (RBF)، طبقهبندی میگردند. الگوریتم ارائه شده بر روی ۹۶ تصویر دیجیتال میکروسکوپی بیماران بیمارستان بقیهالله اعمال گردیده و با روش تحلیل منحنی ROC ارزیابی شده است. نتایج به دست آمده توسط متخصص پاتولوژیست تایید شده و دقت تشخیص سلولهای سالم و سرطانی 92.12٪ و سلولهای خوشخیم و بدخیم 94.14٪ میباشد که برای تشخیص زود هنگام این نوع سرطان امیدوارکننده است. | ||
کلیدواژهها | ||
منطق فازی؛ تبدیل موجک گسسته؛ مکانیزم رای-گیری؛ سرطان معده؛ ماشینبردار پشتیبان | ||
عنوان مقاله [English] | ||
An Intelligent Hybrid Segmentation Model Based on Fuzzy Logic, Discrete Wavelet Transform In Digital Imaging for Detection of Gastric Cancer | ||
نویسندگان [English] | ||
Paniz Teimouri1؛ Mahdi Mazinani1؛ Rahil Hosseini2 | ||
1Department of Electrical Engineering, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran | ||
2Department of Computer Engineering, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran | ||
چکیده [English] | ||
Gastric cancer is the first rank of cancer in Iran. If the disease is detected in early stages, treatment is probability to be furthered and treatment costs will be reduced. Due to the complexity of pathologic images and the fundamental challenges in these images, such as the poor contrast between the cells, cell overlapping and the contradiction in tissue coloring, the process of diagnosing this type of disease is difficult and therefore needs a proper method to eliminate these Problems. In this research, a smart model is proposed to solve these problems. Then a fuzzy-based system, a discrete wavelet transform, The region's growth and the voting mechanism are used to identify the cells. Then, an advanced morphological method was presented for separating overlapping cells. Then the cell's feature were extracted and based on it, the cells are classified using the support vector machine algorithm (SVM) with the RBF kernel. The proposed algorithm was applied to a dataset of patients including 96 Microscopy Images from Baghiyatallah Hospital in Tehran. The proposed model was evaluated using the ROC curve analysis. The results were approved by expert pathologists and reveal accuracy of 92.12% in detection of normal and cancerous cells and 94.14% in detection of benign and malignant cells which are promising for early diagnosis of this type of cancer. | ||
کلیدواژهها [English] | ||
Fuzzy Logic, Discrete Wavelet Transformation, Voting Mechanism, Stomach Cancer, SVM Algorithm | ||
مراجع | ||
[1] M.S. Sierra, P. Cueva, L.E. Bravo, and D. Forman, "Stomach cancer burden in Central and South America", the International Journal of Cancer Epidemiology, Detection and Prevention, Vol.4, No.1, pp.62-73, 2016. [2] X. Yang, L. Liu, Fa. Fang, D. Redati, and H. Wang," Correlation between cellular immune function and prognosis of gastric cancer", Department of Gastrointestinal Surgery, Cancer Hospital, Affiliated to Xinjiang Medical University, china, pp.1275-1282, 2017. [3] E. Norero, E.A. Vega, C. Diaz, G. Cavada, M. Ceroni, C. Martinez, E. Briceno, F. Araos, P. Gonzalez, S. Baez, E. Vinuela, M. Caracci, and A. Diaz, "Improvement in postoperative mortality in elective gastrectomy for gastric cancer: Analysis of predictive factors in 1066 patients from a single centre", European Journal of Surgical Oncology, Vol.43, No.7, pp.1330-1336, 2017. [4] N. Amoori, S. Mahdavi, and M. Enayatrad, "Epidemiology and trend of stomach cancer mortality in Iran", International Journal of Epidemiologic Research, Vol.3, No.3, pp. 268-275, 2016. [5] Y. Veisani, and A. Delpisheh, "Survival rate of gastric cancer in Iran; a systematic review and meta-analysis", Gastroenterology and Hepatology from Bed to Bench, Ilam, Iran, Vol.9, pp.78-86, 2015. [6] W.L. Lamps, A.M. Bellizzi, W.L. Frankel, S.R. Owens, and R.K. Yantiss, "Neoplastic Gastrointestinal Pathology", springer, New York, July 2015. [7] H. Irshad, A. Veillard, L. Roux, and D. Racoceanu, "Methods for Nuclei Detection, Segmentation, and Classification in Digital Histopathology:A Review—Current Status and Future Potential ", IEEE reviews in biomedical engineering, IEEE, vol. 7, pp.97-114, 2013. [8] TM. Shahriar Sazzad, L.J. Armstrong, and A.K. Tripathy, "An Automated Ovarian Tissue Detection Approach Using Type P63 Non-Counter Stained Images to Minimize Pathology Experts Observation Variability", IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, pp.1-5, 2017. [9] M. Kowal, P. Filipczuk, A. Obuchowicz, J. Korbicz, and R. Monczak, "Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images". Computers in Biology and Medicine, SienceDirect, Vol.43, No.10, pp.1563-1572, 2013. [10] T. Wan, X. Liu, J. Chen, and Z. Qin, "Wavelet-based statistical features for distinguishing mitotic and none-mitotic cells in breast cancer histopathology", IEEE International Conference on Image Processing (ICIP), Paris, France, pp.1-5, 2015. [11] T. Goudas, and I. Maglogiannis, "Cancer Cells Detection and Pathology Quantification Utilizing Image Analysis Techniques", Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, vol.34, pp.4418-4421, 2012. [12] M.A. Aswathy, and M. Jagannath, "Detection of breast cancer on digital histopathology images: Present status and future possibilities". Informatics in Medicine Unlocked at Science Direct, India, Vol.8, pp.74-79, 2016. ]13[ سکینه اسدی امیری و حمید حسن پور، "ارائه روشی برای پیش پردازش تصویر جهت بهبود عملکرد JPEG 2000 در فشرده سازی تصویر"، نشریه مدلسازی در مهندسی، دوره 15، شماره 48، بهار 1396، صفحه 1-12. ]14[ اصغر زارع و علی محمدزاده، "حذف نویز ضربهای از تصاویر دیجیتالی مبتنی بر تخمین توزیع مکانی نویزها"، نشریه مدلسازی در مهندسی، دوره 12، شماره 39، زمستان 1393، صفحه 1- 17. ]15[ امین رضایی پناه و علی مبارکی، سعید بحرانی خادمی، "بهینه سازی شبکه عصبی MLP با استفاده از الگوریتم ژنتیک موازی FinGrain برای تشخیص سرطان سینه"، نشریه مدلسازی در مهندسی، دوره 17، شماره 57، تابستان 1398، صفحه 12- 12. [16] X. Baia, X. Chen, F. Zhou, Zh. Liu, and B. Xue , "Multiscale top-hat selection transform based infrared and visual image fusion with emphasis on extracting regions of interest", Infrared Physics and Technology, Vol. 60, pp. 81-93, 2013. [17] H. Hassanpour, N. Samadiani, and M. Salehi, "Using morphological transforms to enhance the contrast of medical images", The Egyptian Journal of Radiology and Nuclear Medicine, Vol.46, Issue 2, pp.481-489, 2015. [18] C. Goswami Jaideva, and K. Chan Andrew, "Fundamentals of wavelets: theory, algorithms, and applications", 2th ed, Wiley, USA, 2011. [19] A. Khare, and U.S. Tiwary, "Daubechies complex wavelet transform based technique for denoising of medical images". International Journal of Image and Graphics, Vol.7, No.40, pp. 663–687, 2007. [20] S.I. Niwas, P. Palanisamy, K. Sujathan, and E. Bengtsson, "Analysis of nuclei textures of fine needle aspirated cytology images for breast cancer diagnosis using Complex Daubechies wavelets", Signal Processing, Elsevier,Vol.93, Issue.10, pp.2828–2837, 2013. [21] L. I. Kuncheva, "Combining pattern classifiers: methods and algorithms", John Wiley & Sons, 2004. [22] L. Cheng-Hsuan, L. Chin-Teng, K. Bor-Chen, and H. Hsin-Hua, "An automatic method for selecting the parameter of the normalized kernel function to support vector machines", International Conference on Technologies and Applications of Artificial Intelligence, Hsinchu, Taiwan, pp.226-232, 2011. [23] W. Wang, H. Song, and Q. Zhao, "A modified Watersheds Image Segmentation Algorithm for Blood Cell", International Conference on Communications, Circuits and Systems, Guilin, China, pp.451-452, 2007. [24] K. Rodenacker,and E. Bengtsson, "A feature set for cytometry on digitized microscopic images", the Journal of the European Society for Analytical Cellular Pathology, Vol.25, No.1, pp.1-36, 2003. [25] J. Davis, and M. Goadrich, "The Relationship between Precision-Recall and ROC Curves", international conference on Machine learning, New York, NY, USA, pp.233-240, 2006.
| ||
آمار تعداد مشاهده مقاله: 607 تعداد دریافت فایل اصل مقاله: 340 |