
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,981 |
تعداد دریافت فایل اصل مقاله | 7,656,414 |
On existence of solutions for some nonlinear fractional differential equations via Wardowski-Mizoguchi-Takahashi type contractions | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 72، دوره 12، شماره 1، مرداد 2021، صفحه 893-902 اصل مقاله (367.18 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2020.20511.2161 | ||
نویسندگان | ||
Vahid Parvaneh* 1؛ Babak Mohammadi2؛ Manuel De la Sen3؛ Esmaeil Alizadeh4؛ Hemant Kumar Nashine5 | ||
1Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran. | ||
2Department of Mathematics, Marand Branch, Islamic Azad University, Marand, Iran | ||
3Institute of Research and Development of Processes, Leioa 48940, Spain | ||
4Department of Mathematics, Marand Branch, Islamic Azad University, Marand, Iran | ||
5Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, TN, India | ||
تاریخ دریافت: 23 مهر 1397، تاریخ بازنگری: 21 خرداد 1398، تاریخ پذیرش: 08 تیر 1399 | ||
چکیده | ||
Using the concept of extended Wardowski-Mizoguchi-Takahashi contractions, we investigate the existence of solutions for three type of nonlinear fractional differential equations. To patronage our main results, some examples of nonlinear fractional differential equations are given. | ||
کلیدواژهها | ||
nonlinear fractional differential equation؛ Wardowski-Mizoguchi-Takahashi type contraction؛ fixed point | ||
مراجع | ||
[1] I. Podlubny, Fractional Differential Equations, NY, New York, Academic Press, 1999. [2] S.G. Samko, A.A. Kilbas and O.I. Maricev, Fractional Integral and Derivative, UK. London, Gordon and Breach, 1993. [3] MU. Ali, T. Kamran, W. Sintunavarat and PH. Katchang, Mizoguchi-Takahashi’s fixed point theorem with α, η functions, Abstr. Appl. Anal. 2013 (2013), Article ID 418798, 4 pages. [4] A. Amini-Harandi and H. Emami, A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear Anal. 72 (2010) 2238–2242. [5] A. Aghajani, M. Abbas and J.R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca 64(4) (2014) 941–960. [6] A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and application of fractional differential equations, North Holland Math. Stud. 204 (2006). [7] Z. Mustafa, J.R. Roshan, V. Parvaneh and Z. Kadelburg, Fixed point theorems for weakly T-Chatterjea and weakly T-Kannan contractions in b-metric spaces, J. Ineq. Appl. 2014 (2014) 46. [8] J.R. Roshan, V. Parvaneh and I. Altun, Some coincidence point results in ordered b-metric spaces and applications in a system of integral equations, Appl. Math. Comput. 226 (2014) 725-737. [9] G. Mınak and I. Altun, Some new generalizations of Mizoguchi-Takahashi type fixed point theorem, J. Ineq. Appl. 2013 (2013) 493. [10] M.E. Gordji and M. Ramezani, A generalization of Mizoguchi and Takahashi’s theorem for single-valued mappings in partially ordered metric spaces, Nonlinear Anal. 74(13) (2011) 4544-4549. [11] E. Karapınar and B. Samet, Generalized (α−ψ)- contractive type mappings and related fixed point theorems with applications, Abst. Appl. Anal. 2012 (2012) Article ID: 793486. [12] N. Hussain, E. Karapınar, P. Salimi and P. Vetro, Fixed point results for Gm-Meir-Keeler contractive and G- (α, ψ)-Meir-Keeler contractive mappings, Fixed Point Theory Appl. 34 (2013). [13] B. Samet, C. Vetro and P. Vetro, Fixed point theorem for α − ψ-contractive type mappings. Nonlinear Anal. 75 (2012) 2154–2165. [14] N. Mizoguchi and W. Takahashi, Fixed point theorems for multi-valued mappings on complete metric space, J. Math. Anal. Appl. 141 (1989) 177-188. [15] B. Mohammadi, V. Parvaneh, H. Aydi and H. Isik, Extended Mizoguchi-Takahashi type fixed point theorems and their application, Math. 7 (2019) 575. [16] D. Wardowski, Fixed points of a new type of contractive mappings in MbMSs, Fixed Point Theory Appl. 94 (2012). | ||
آمار تعداد مشاهده مقاله: 15,654 تعداد دریافت فایل اصل مقاله: 362 |