
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,796 |
تعداد دریافت فایل اصل مقاله | 7,656,258 |
The extended tanh method for solving conformable space-time fractional KdV equations | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 94، دوره 12، شماره 1، مرداد 2021، صفحه 1181-1194 اصل مقاله (643.72 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2019.15346.1807 | ||
نویسندگان | ||
Handan Yaslan* ؛ Ayşe Girgin | ||
Department of Mathematics, Pamukkale University, Denizli, 20070, Turkey | ||
تاریخ دریافت: 18 تیر 1397، تاریخ بازنگری: 26 مهر 1398، تاریخ پذیرش: 06 آبان 1398 | ||
چکیده | ||
In this study, we obtain exact traveling wave solutions of the conformable space-time fractional Sawada-Kotera-Ito, Lax and Kaup-Kupershmidt equations by using the extended tanh method. The obtained traveling wave solutions are expressed by the hyperbolic, trigonometric, exponential and rational functions. Simulation of the obtained solutions are given at the end of the paper. | ||
کلیدواژهها | ||
Conformable space-time fractional Sawada-Kotera-Ito equation؛ Conformable space-time fractional Lax equation؛ Conformable space-time fractional Kaup-Kupershmidt equation؛ Extended tanh method؛ Traveling wave solutions | ||
مراجع | ||
[1] I. Podlubny, Fractional differential equations, Academic Press. San Diego, 1999. [2] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993. [3] K.B. Oldham and J. Spanier, The fractional calculus: Integrations and differentiations of arbitrary order, Academic Press, New York, 1974. [4] B.R. Sontakke, A. Shaikh and V. Jadhav, Fractional complex transform for approximate solution of time fractional Zakharov-Kuznetsov equation, IJPAM 116 (4) (2017) 913–927. [5] B.R. Sontakke and A. Shaikh, Approximate solutions of time-fractional Kawahara and modified Kawahara equations by Fractional complex transform, CNA 2 (2016) 218–229. [6] B.R. Sontakke and A. Shaikh, Numerical Solutions of Time Fractional Fornberg-Whitham And Modified Fornberg with am Equations Using New Iterative Method, Asian J. Math. Comput. Res. 13(2) (2016) 66–76. [7] M. Inc, The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method, J. Math. Anal. Appl. 345 (2008) 476–484. [8] B.P. Moghaddam and JAT. Machado, A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations, Comput. Math. Appl. 73 (2017) 1262–1269. [9] IE. Inan, S. Duran and Y. Ugurlu, tan(F(ξ2))-expansion method for traveling wave solutions of AKNS and Burgerslike equations Modified method of simplest equation and its applications to the Bogoyavlenskii equation, Optik 138 (2017) 15–20. [10] N.H. Sweilam, S.M. Al-Mekhlafi and A.O. Albalawi, A novel variable-order fractional nonlinear Klein Gordon model: A numerical approach. Numer. Methods Partial Differ. Equ. 35 (2019) 1617–1629. [11] Y. Shekari, A. Tayebi and M.H. Heydari, A meshfree approach for solving 2D variable-order fractional nonlinear diffusion-wave equation, Comput. Methods Appl. Mech. Engrg. 350 (2019) 154–168. [12] D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Philos. Mag. 39 (1895) 422–443. [13] A. Jeffrey and T. Kakutani, Weak nonlinear dispersive waves: A discussion centered around the Korteweg-de Vries equation, SIAM Rev. 14 (1972) 582–643. [14] A.C. Scott, F.Y.F. Chu and D.W. McLaughlin, The soliton: a new concept in applied science, Proc. IEEE 61 (1973) 1443–1483. [15] R.M. Miura, The Korteweg-de Vries equation: a survey of results, SIAM Rev. 18 (1976) 412–459. [16] R. Grimshaw, E. Pelinovsky and T. Talipova, Solitary wave transformation in a medium with sign-variable quadratic nonlinearity and cubic nonlinearity, Phys. D 132 (1999) 40–62. [17] R. Grimshaw, D. Pelinovsky, E. Pelinovsky and T. Talipova, Wave group dynamics in weakly nonlinear long-wave models, Phys. D 159 (2001) 35–57. [18] Y. Pomeau, A. Ramani and B. Grammaticos, Structural stability of the Korteweg-de Vries solitons under a singular perturbation, Physica D 31 (1988) 127–134. [19] A.M. Wazwaz, Partial differential equations and solitary waves theory, Springer Science and Business Media, 2010. [20] E.M.E. Zayed and K.A.E. Alurrfi, The modified Kudryashov method for solving some seventh order nonlinear PDEs in mathematical physics, WJMS. 11 (2015) 308–319. [21] D.D. Ganji, A.G. Davodi and Y.A. Geraily, Sawada KoteraIto, Lax and Kaup Kupershmidt equations using Exp function method, Math. Meth. Appl. Sci. 33 (2010) 167–176. [22] J. Feng, New travelling wave solutions to the seventh-order Sawada-Kotera equation, J. Appl. Math. Inf. 28 (2010) 1431–1437. [23] Y.J. Shen, Y.T. Gao, X. Yu, G. Meng and Y. Qin, Bell-polynomial approach applied to the seventh-order Sawada Kotera Ito equation, Appl. Math. Comput. 227 (2014) 502–508. [24] A.M. Wazwaz, The Hirota’s direct method and the tanh-coth method for multiple-soliton solutions of the Sawada Kotera-Ito seventh-order equation, Appl. Math. Comput. 199 (2008) 133–138. [25] H. Nemati, Z. Eskandari, F. Noori and M. Ghorbanzadeh, Application of the homotopy perturbation method to seven-order Sawada-Kotara equations, J. Eng. Sci. Technol. Rev. 4 (2011) 101–104. [26] A.H. Salas, C.A. Gomez and B.A. Frias, Computing exact solutions to a generalized Lax-Sawada-Kotera-Ito seventh order KdV equation, Math. Probl. Eng. 2010 (2010) 7 pages. [27] M. Saravi, A. Nikkar, M. Hermann, J. Vahidi and R. Ahari, A new modified approach for solving seven-order Sawada-Kotara equations, J. Math. Computer Sci. 6 (2013) 230–237. [28] A.A. Al-Shawba, A. Gepreel, F.A. Abdullah and A. Azmi, Abundant closed form solutions of the conformable time-fractional Sawada-Kotera-Ito equation using G0/G-expansion method, Results Phys. 9 (2018) 337–343. [29] E. Yassar, Y. Yldrm and C.M. Khalique, Lie symmetry analysis, conservation laws and exact solutions of the seventh-order time fractional Sawada Kotera Ito equation, Results Phys. 6 (2016) 322–328. [30] E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A 277 (2000) 212–218. [31] U.M. Abdelsalam, Exact travelling solutions of two coupled (2 + 1)-dimensional equations, Egypt. Math. Soc. 25 (2017) 125–128. [32] R. Khalil, M.A. Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014) 65–70. | ||
آمار تعداد مشاهده مقاله: 15,647 تعداد دریافت فایل اصل مقاله: 435 |