
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,917 |
تعداد دریافت فایل اصل مقاله | 7,656,370 |
Several integral inequalities and their applications on means | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، شماره 2، بهمن 2021، صفحه 363-374 اصل مقاله (361.93 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.23169.2486 | ||
نویسنده | ||
Gholamreza Zabandan* | ||
Department of Mathematics, Kharazmi University, Tehran, Iran. | ||
تاریخ دریافت: 28 بهمن 1399، تاریخ پذیرش: 31 فروردین 1400 | ||
چکیده | ||
In this paper we prove several sharp inequalities that are new versions and extensions of Jensen and $H-H$ inequalities. Then we apply them on means. | ||
کلیدواژهها | ||
Jensen’s inequality؛ Hermite- Hadamard inequality؛ Integral inequality؛ Identric mean؛ Logaritmic mean | ||
مراجع | ||
[1] G. D. Anderson, M. K. Vamanamurtby and M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl. 335 (2007) 1294–1308. [2] F. Bruk, The geometric, logarithmic and arithmetic mean inequality, Amer. Math. Month. 94(6) (1987) 527–528. [3] Y. M. Chu, S. W. Hou and W. F. Xia, Optimal convex combinations bounds of centroidal and harmonic means for logaritmic and identric means, Bull. Iran. Math Soc. 39(2)(2013) 259–269. [4] O. Kouba, New bounds for the identric mean of two arguments, J. Ineqal. Pure Appl. Math. 9(3) (2008) Article 71, pp.6. [5] F. Qi and B. N. Guo, An inequality between ratio of the extended logaritmic means and ratio of the exponential means, Taiwanese J. Math, 7(2) (2003) 229–237. [6] J. Sandor, On certain inequalities for means III, Arch. Math. (Basel) 76(1) (2001) 34–40. [7] J. Sandor, On the identric and logaritmic means, Aeq. Math. 40(2–3) (1990) 261–270. [8] J. Sandor, On refinements of certain inequalities for means, Arch. Math .(Brno) 31(4) (1995) 274–282. [9] M. Z. Sarikaya and H. Budak, On generalized Hermite-Hadamard inequality for generalized convex function, Int. J. Nonlinear Anal. Appl. 8 (2017) 209–222. [10] M. K. Wang, Z. K. Wang and Y. M. Chu, An optimal double inequality between geometric and identric mean, Appl. Math. Lett. 25(3) (2012) 471–475. [11] ZH-H. Yang, New sharp bounds for logaritmic mean and identric mean, J. Inequal. Appl. (2013) Article 116. [12] G. Zabandan, An extension and refinement of Hermite-Hadamard inequalities and related results, Int. J. Nonlinear Anal. Appl. 11(2) (2020) 379–390. [13] G. Zabandan, Jensen’s inequality for GG-convex functions, Int. J. Nonlinear Anal. Appl. 10(1) (2019) 1–7. [14] G. Zabandan, Jensen’s inequality for HH-convex functions and related results, Adv. inequal, Appl. (2016) Article 10. [15] T. Zhang, W. F. Xia, Y. M. Chu and G. D. Wang, Optimal bounds for logaritmic and identric means in terms of generalized centeroidal mean, J. Appl. Anal. 19 (2013) 141–152. | ||
آمار تعداد مشاهده مقاله: 15,499 تعداد دریافت فایل اصل مقاله: 549 |