
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,943 |
تعداد دریافت فایل اصل مقاله | 7,656,400 |
An approximate solution of integral equation using Bezier control Points | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، شماره 2، بهمن 2021، صفحه 793-798 اصل مقاله (367.73 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.5135 | ||
نویسندگان | ||
Asmaa N. Al-Janabi* 1؛ Farah J. Al Zahed2؛ Ahmad Hadi Hussain3 | ||
1College of Engineering, Al-Nahrain University, Baghdad, Iraq | ||
2Department of Mathematics, College of Science for woman, University of Baghdad,Iraq | ||
3College of Engineering Al-musayab, Department of Energy Engineering, University of Babylon, Iraq | ||
تاریخ دریافت: 22 بهمن 1399، تاریخ بازنگری: 27 اسفند 1399، تاریخ پذیرش: 30 فروردین 1400 | ||
چکیده | ||
The integral equations are computed numerically using a Bezier curve. We have written the linear Fredholm integral equation into a matrix formulation by using a Bezier curves as a piecewise polynomials of degree n and we use (n+1) unknown control points on unit interval to determine Bezier curve. two examples have been discussed in details. | ||
کلیدواژهها | ||
Bezier curve؛ Bernstien polynomials؛ Fredholm integral equation | ||
مراجع | ||
[1] M. Abdou, On asymptotic methods for redholm-volterra integral equation of the second kind in contact problems, J. Computational and Appl. Math. 145 (2003) 431–446. [2] M. Evrenosoglu and S. Somali, Least squares methods for solving singularly perturbed two-point boundary value problems using Bezier control points, App. Math. Lett. 21 (2008) 1029–1032. [3] K. Forbes, S. Crozier and D. Doddrell, Calculating current densities and fields produced by shielded magnetic resonance imagingprobes, SIAM J. Math. Anal. 57 (1997) 401–425. [4] F. Ghomanjani, M. Farahi and A. Kilicman, Bezier curves for solving Fredholm integral equations of the second kind, Math. Prob. Engin. 6 (2014). [5] K. Harada and E. Nakamae, Application of the Bezier curve to data interpolation, Comput. Aided Des. 14 (1982) 55–59. [6] K. Holmaker, Global asymptotic stability for a stationary solution of a system of integro-differential equations describing the formation of liver zones, SIAM J. Math. Anal. 24 (1993) 116–128. [7] A. Jerri, Introduction to Integral Equations with Application, John Wiley & Sons Inc., 1999. [8] E. Kreyszig, Bernstein polynomials and numerical integration, Int. J. Numer. Method Engin. 14 (1979) 292–295. [9] G. Nurnberger and F. Zeilfelder, Developments in bivariate spline interpolation, J. Comput. Appl. Math. 121 (2000) 125–152. [10] J. Reinkenhof, Differentiation and integration using Bernstein’s polynomials, Int. J. Numer. Methods Engin. 11(10) (1977) 1627–1630. [11] S. Swarup, Integral E quations, Krishna Prakashan Media Pvt. LTD, 15th Edition, 2007. [12] J. Zheng, T. Sederberg and R. Johnson, Least squares methods for solving differential equations using Bezier control points, Appl. Num. Math. 48 (2004) 237–252. | ||
آمار تعداد مشاهده مقاله: 15,703 تعداد دریافت فایل اصل مقاله: 788 |