
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,892 |
تعداد دریافت فایل اصل مقاله | 7,656,361 |
The generalized (2 + 1) and (3+1)-dimensional with advanced analytical wave solutions via computational applications | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، شماره 2، بهمن 2021، صفحه 1213-1241 اصل مقاله (1.19 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.5222 | ||
نویسندگان | ||
Faeza L. Hasan* 1؛ Mohamed A. Abdoon2 | ||
1Mathematics Department, Education for Pure Science Faculty, Basrah University, Basrah, Iraq | ||
2Department of Basic Science (Mathematics), Deanship of Common First Year, Majmaah University, Riyadh, Saudi Arabia | ||
تاریخ دریافت: 28 اسفند 1399، تاریخ بازنگری: 01 اردیبهشت 1400، تاریخ پذیرش: 06 خرداد 1400 | ||
چکیده | ||
The analytical solutions for an important generalized Nonlinear evolution equations NLEEs dynamical partial differential equations (DPDEs) that involve independent variables represented by the (2 + 1)-dimensional breaking soliton equation, the (2 + 1)-dimensional Calogero--Bogoyavlenskii--Schiff (CBS) equation, and the (2 +1)-dimensional Bogoyavlenskii's breaking soliton equation (BE), and some new exact propagating solutions to a generalized (3+1)-dimensional KP equation with variable coefficients are constructed by using a new algorithm of the first integral method (NAFIM) and determined some analytical solutions by appointing special values of the parameters. In addition to that, we showed a new variety and unique travelling wave solutions by graphical illustration with symbolic computations. | ||
کلیدواژهها | ||
First integral method؛ Nonlinear evolution equations؛ Solitary waves solutions؛ Graphical representation؛ Symbolic computation | ||
مراجع | ||
[1] M. Abdoon, Programming first integral method general formula for the solving linear and nonlinear equations, Appl. Math. 6 (2015) 568. [2] Al-Amr and O. Mohammed, Exact solutions of the generalized (2+1)-dimensional nonlinear evolution equations via the modified simple equation method, Comput. Math. Appl. 69(5) (2015) 390–397. [3] M. Al-Amr, Exact solutions of the generalized (2+ 1)-dimensional nonlinear evolution equations via the modified simple equation method, Comput. Math. Appl. 5 (2015) 390–397. [4] A. Aleixo and A. Balantekin, Algebraic construction of coherent states for nonlinear quantum deformed systems, J. Phys. A: Math. Theor. 16 (2012) 165302. [5] T. Bo. and G. YI-Tian, On the generalized Tanh method the (2+1)-dimensional breaking soliton equations, Mod. Phys. Lett. A. 38 (1995) 2937–2941. [6] B. Buti, V. Galinski, V. Shevchenko, G. Lakhina, B. Tsurutani, B. Goldstein, B. Diamond and M. Medvedev, Evolution of Nonlinear Alfv´en Waves in Streaming Inhomogeneous Plasmas, Astrophysical J. 523 (1999) 849. [7] O. Bogoyavlenskii, Breaking solitons in 2+ 1-dimensional integrable equations, Russian Math. Surv. 45(4) (1990). [8] R. Cherniha and S. Kovalenko, Lie symmetries and reductions of multi-dimensional boundary value problems of the Stefan type, J. Phys. A: Math. Theo. 44 (2011) 485202. [9] M. Darvishi and M. Najafi, Some exact solutions of the (2+ 1)-dimensional breaking soliton equation using the three-wave method, Int. J. Comput. Math. Sci. 6 (2012) 13–16. [10] T. Ding and C. Li, Ordinary differential equations, Theor. Math. Phys. 137 (1996) 1367–1377. [11] M. Ekici, D. Duran and A. Sonmezoglu, Constructing of exact solutions to the (2+ 1)-dimensional breaking soliton equations by the multiple (G’/G)-expansion method, J. Adv. Math. Stud. 1 (2014) 27–30. [12] L. Faeza, First integral method for constructing new exact solutions of the important nonlinear evolution equations in physics, Phys. Conf. Ser. 2020. [13] Y. Guldem and D. Durmus, Solution of the (2+1) donation breaking soliton equation by using two different methods, J. Eng. Tech. App. Sci. 1 (2016) 13–18. [14] G. Hami and F. Omer, ¨ Benjamin-Bona-Mahony equation by using the sn-ns method and the tanh-coth method, Math. Moravica, 1 (2017) 95–103. [15] T. Kobayashi and K. Toda, The Painlev´e test and reducibility to the canonical forms for higher-dimensional soliton equations with variable-coefficients, Symmet. Integ. Geom. Meth. Appl. 2 (2006) 063. [16] A. Lisok, A. Trifonov and A. Shapovalov, The evolution operator of the Hartree-type equation with a quadratic potential, J. Phys. A: Math. Gen. 37 (2004) 4535. [17] W. Ma, A. Abdeljabbar and M. GamilAsaad, Wronskian and Grammian solutions to a (3+ 1)-dimensional generalized KP equation, Appl. Math. Comput. 24 (2011) 10016–10023. [18] W. Ma and A. Abdeljabbar, A bilinear B¨acklund transformation of a (3 + 1)-dimensional generalized KP equation, Appl. Math. Lett. 25(10) (2012) 1500–1504. [19] K. Melike, A. Arzu and B. Ahmet, (2016) Solving space-time fractional differential equations by using modified simple equation method, Commun. Theor. Phys. 5 (2016) 563–568.[20] M. Mirzazadeh, A couple of solutions to a (3+ 1)-dimensional generalized KP equation with variable coefficients by extended transformed rational function method, Elect. J. Math. Anal. Appl. 1 (2015) 188–194. [21] A. Mohamed, First integral method: A general formula for nonlinear fractional Klein-Gordon equation using advanced computing language, Amer. J. Comput. Math. 5 (2015) 127–134. [22] S. Mohyud-Din, A. Irshad, N. Ahmed and U. Khan, Exact solutions of (3+ 1)-dimensional generalized KP equation arising in physics, Results Phys. 7 (2017) 3901–3909. [23] M. Najafi, S. Arbabi and M. Najafi, New application of sine-cosine method for the generalized (2 + 1)-dimensional nonlinear evolution equations, Int. J. Adv. Math. Sci. 1 (2013) 45–49. [24] M. Najafi, M. Najafi and S. Arbabi, New exact solutions for the generalized (2+ 1)-dimensional nonlinear evolution equations by Tanh-Coth method, Int. J. Modern Theo. Phys. 2 (2013) 79–85. [25] M. Najafi, M. Najafi and S. Arbabi, New application of (G 0 /G)-expansion method for generalized (2 + 1)- dimensional nonlinear evolution equations, Int. J. Eng. Math. 5 (2013) Article ID 746910. [26] V. Orlov and O. Kovalchuk, Research of one class of nonlinear differential equations of third order for mathematical modelling the complex structures, IOP Conf. Ser.: Mater. Sci. Eng. 365 (2018) 042045. [27] Y. Peng, New types of localized coherent structures in the Bogoyavlenskii-Schiff equation, Int. J. Theor. Phys. 45 (2006) 1779–1783. [28] A. Pullen, A. Benson and L. Moustakas, Nonlinear evolution of dark matter subhalos and applications to warm dark matter, Astrophysical J. 792(1) (2014) 24. [29] A. Seadawy, N. Cheemaa and A. Biswas, Optical dromions and domain walls in (2+ 1)-dimensional coupled system, Optik, 227 (2020) 165669. [30] Y. Tang, S. Tao, M. Zhou and Q. Guan, Interaction solutions between lump and other solitons of two classes of nonlinear evolution equations, Nonlinear Dyn. 89(1) (2017) 429–442 . [31] M. Tarig and B. Jafar, (2011) Homotopy perturbation method and Elzaki transform for solving system of nonlinear partial differential equations, Worl. Appl. Sci. J. 7 (2011) 944–948. [32] A. Wazwaz, Integrable (2+ 1)-dimensional and (3+ 1)-dimensional breaking soliton equations, Physica Scripta, 81 (2010) 035005. [33] W. X. Ma, Abundant lumps and their interaction solutions of (3+1)-dimensional linear PDEs, J. Geom. Phys. 133 (2018) 10–16 . [34] Y. Yıldırım and E. Ya¸sar, A (2+ 1)-dimensional breaking soliton equation: solutions and conservation laws, Chaos, Solitons Fract. 107 (2018) 146–155. [35] G. Yildiz and D. Daghan, Solution of the (2+ 1) dimensional breaking Soliton equation by using two different methods, J. Engin. Tech. Appl. Sci. 1 (2016) 13–18. [36] V. Zakharov, Collapse of Langmuir waves, Sov. Phys. JETP. 5 (1972) 908–914. [37] Y. Zhou, M. Wang and Y. Wang, Periodic wave solutions to a coupled KdV equations with variable coefficients, Phys. Lett. A. 1 (2003) 31–36. | ||
آمار تعداد مشاهده مقاله: 15,628 تعداد دریافت فایل اصل مقاله: 582 |