
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,909 |
تعداد دریافت فایل اصل مقاله | 7,656,366 |
Mixed fractional partial differential equations by the base method | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، شماره 2، بهمن 2021، صفحه 1687-1697 اصل مقاله (399.16 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.5309 | ||
نویسندگان | ||
Ali Salim Mohammed* ؛ Hasan Shather | ||
Department of Mathematics, Ministry of Education, Thi-Qar, Iraq | ||
تاریخ دریافت: 14 دی 1399، تاریخ بازنگری: 18 اسفند 1399، تاریخ پذیرش: 02 اردیبهشت 1400 | ||
چکیده | ||
In this paper, the invariant subspace method is generalized and improved and is then used to have an exact solution for a wide class of the linear/ non-linear mixed fractional partial differential equations $(FPDEs)$; with constant, non-constant coefficients. Some examples are given here to illustrate the efficiency of this method. | ||
کلیدواژهها | ||
Caputo fractional derivative؛ Mittag-Leffler function؛ Laplace transform؛ invariant subspace method؛ fractional partial differential equations | ||
مراجع | ||
[1] S. Choudhary and V. Daftardar-Gejji, Invariant subspace method: A tool for solving fractional partial differential equations, Frac. Calc. Appl. Anal. 2 (2017) 477–493. [2] M. Eslami, B. F. Vajargah, M. Mirzazadeh and A. Biswas, Applications of first integral method to fractional partial differential equations, Indian J. Phys. 2 (2014) 177–184. [3] V. A. Galaktionov, Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities, Proc. R. Soc. Edinb. Sect. A Math. 2 (1995) 225–246. [4] V. A. Galaktionov and S. R. Svirshchevskii, Exact Solutions and Invariant Subspaces of nonlinear Partial Differential Equations in Mechanics and Physics, Chapman and Hall/CRC, London, 2007. [5] R.K. Gazizov and A. A. Kasatkin, Construction of exact solutions for fractional order differential equations by invariant subspace method, Comput. Math. Appl. 5 (2013) 576–584. [6] P. Artale Harris and R.Garra, Analytic solution of nonlinear fractional Burgers-type equation by invariant subspace method, arXiv preprint arXiv:1410.8085, (2013) 1–8. [7] P. Artale Harris and R.Garra, Nonlinear time-fractional dispersive equations, arXiv preprint arXiv:1410.8085, (2014) 1–14. [8] J. Jiang, Y. Feng and S. Li, Exact solutions to the fractional differential equations with mixed partial derivatives, Axioms, 1 (2018) 1–10. [9] A. Ouhadan and E.H. El Kinani, Invariant subspace method and fractional modified Kuramoto-Sivashinsky equation, arXiv preprint arXiv:1503.08789, (2015) 1–12. [10] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, New York, 1998. [11] R. Sahadevan and Thangarasu, Invariant subspace method and exact solutions of certain nonlinear time fractional partial differential equations, Fract. Calc. Appl. Anal. 18 (2015) 146–162. [12] R. Sahadevan and P. Prakash, Exact solution of certain time fractional nonlinear partial differential equations, Nonlinear Dyn. 85 (2016) 659–673. [13] S.R. Svirshchevskii and R. Sergey, Invariant linear spaces and exact solutions of nonlinear evolution equations, J. Nonlinear Math. Phys. 3 (1996) 146–169. [14] K.V. Zhukovsky, Operational solution for some types of second order differential equations and for relevant physical problems, J. Math. Anal. 446 (2017) 628–647. | ||
آمار تعداد مشاهده مقاله: 15,864 تعداد دریافت فایل اصل مقاله: 524 |