
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,839 |
تعداد دریافت فایل اصل مقاله | 7,656,342 |
Stability analysis of a diseased Prey - Predator - Scavenger system incorporating migration and competition | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، شماره 2، بهمن 2021، صفحه 1827-1853 اصل مقاله (1000.25 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.5320 | ||
نویسندگان | ||
Marwah Ali Yousif* 1؛ Hassan Fadhil Al-Husseiny2 | ||
1Department of Mathematics, College of Science, University of Baghdad, Baghdad-Iraq | ||
2Department of Mathematics, College of Science, Baghdad University, Baghdad, Iraq | ||
تاریخ دریافت: 19 اسفند 1399، تاریخ بازنگری: 06 خرداد 1400، تاریخ پذیرش: 19 تیر 1400 | ||
چکیده | ||
In this paper, a prey-predator-scavenger model is proposed and analyzed. It is assumed that the model considered the effect of disease on the prey. Firstly, the existence, uniqueness and boundedness of the solution of the model are discussed. Secondly, we studied the existence and local stability of all equilibrium points. Furthermore, some of the Sufficient conditions of the global stability of the positive equilibrium are established using suitable Lyapunov functions. Finally, those theoretical results are demonstrated with numerical simulations. | ||
کلیدواژهها | ||
prey-predetor-scavenger model؛ stability analysis؛ migrations | ||
مراجع | ||
[1] M. M. Abdulkadhim and H. F. Al-Husseiny, The stability analysis of the diseased predator-prey model incorporating migration in the contaminated environment, J. Phys. Conf. Ser. 2021 pp.1–23. [2] H Ali and A. N. Mustafa, Analysis of a mathematical model in a food web system containing scavenger species, J. Univ. Babylon Pure Appl. Sci. 27 (2019) 1–15. [3] R.M. Anderson and R.M. May, Regulation and stability of host-parasite population interactions: I. Regulatory processes, J. Animal Eco. 47 (1978) 219–247.[4] C. Arancibia-Ibarra, The basins of attraction in a modified may-holling-tanner predator-prey model with allee effect, Nonlinear Analysis, 185 (2019) 15-28. [5] S. Gakkhar and R.K. Naji., On a food web consisting of a specialist and a generalist predator, J. Bio. Syst. 11 (2003) 365–376. [6] R.P. Gupta and P. Chandra, Dynamical properties of a prey-predator-scavenger model with quadratic harvesting, Commun. Nonlinear Sci. Numerical Sim. 49 (2017) 202–214. [7] K.P. Hadeler and H. I. Frerdman, Predator-prey populations with parasitic infection, J. Math. Biol. 27 (1989) 609-631. [8] M. Haque and E. Venturino, The effect of communicable disease in Leslie-Gower predator-prey model, J. Bio. Syst. 163 (2008) 425–444. [9] M. Haque, J. Zhen and E. Venturino, Rich dynamics of Lotka-Volterra type predator prey model system with viral disease in prey species, Math. Meth. Appl. Sci. 32 (2009) 875–898. [10] M. Haque, A predator-prey model with disease in the predator species only, Nonlinear Anal. Real World Appl. 11 (2010) 2224–2236. [11] M. Haque, S. Sarwardi, S. Preston and E. Venturino, Effect of delay in a Lotka Volterra type predator-prey model with a transmissible disease in the predator species, Math. Biosci. 234 (2011) 47-57. [12] E.J. Jansen and A.R. Van Gorder, Dynamics from a predator-prey-quarry-resource-scavenger model, Theo. Eco. J. 11 (2018) 19–38. [13] Y. Kang, A two-patch prey-predator model with predator dispersal driven by the predation strength, Math. Biosci. 14 (2017) 843–880. [14] S. Kant, V. Kumar, Stability analysis of predator-prey system with migrating prey and disease infection in both species, Appl. Math. Model. 42 (2017) 509–539. [15] S. Kumar and H. Kharbanda, Stability analysis of prey-predator model with infection, migration and vaccination in prey, arXiv preprint, arXiv:1709.10319, (2017) 1–27. [16] W.O. Kermack and A.G. McKendrick, Contributions to the mathematical theory of epidemics, part i., Proc. Royal Soc. Edinburgh Section A. Math. 115 (1927) 700-721. [17] A. A. Mohsen and I. A. Aaid, Stability of a prey-predator model with SIS epidemic disease in predator involving holling type II function response, IOSR J. Math. 11 (2015) 38-53. [18] R. K. Naji and H. F. Ridha, The dynamics of a prey-predator model incorporating svis-type of disease in prey, J. Math. 12 (2016) 90-101. [19] R.K. Naji and A. N. Mustafa, The dynamics of an eco-epidemiological model with nonlinear incidence rate, J. Appl. Math. 2012 (2012) 1–25. [20] P. Panja, Prey-predator-scavenger model with Monod-Haldane type functional response, Rend. del Circ. Mate. Palermo Ser. 2, 2 (2020) 1205-1219. [21] C. V. Pavan Kumar , K. Shiva Reddy and M. A. S. Srinivas, Dynamics of prey predator with Holling interactions and stochastic influences, 57 (2018) 1079-1086. [22] H. A. Satar and R. K. Naji, Stability and bifurcation of a prey-predator-scavenger model in the existence of toxicant, Int. J. Math. Math. Sci. 2019 (2019) 1–17. [23] S. Slimani, P. Raynaud and I. Boussaada, Dynamics of a prey-predator system with modified Leslie-Gower and Holling type II schemes incorporating a prey refuge, Amer. Inst. Math. Sci. 24 (2019) 5003–5039. [24] A. Suryanto and I. Darti, Stability analysis and nonstandard grunwald-letnikov scheme for a fractional order predator-prey model with ratio-dependent functional response, AIP Conference Proceedings, 2017, pp. 1–6. [25] Y. Xiao and L. Chen, A ratio-dependent preydator-prey model with disease in the prey, Appl. Math. Comput. 131 (2002) 397–414. | ||
آمار تعداد مشاهده مقاله: 15,692 تعداد دریافت فایل اصل مقاله: 576 |