
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,885 |
تعداد دریافت فایل اصل مقاله | 7,656,357 |
Representation of solutions of eight systems of difference equations via generalized Padovan sequences | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، Special Issue، اسفند 2021، صفحه 447-471 اصل مقاله (188.84 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.22477.2368 | ||
نویسندگان | ||
Merve KARA* 1؛ Yasin Yazlik2 | ||
1Ortakoy Vocational High School, Aksaray University, Aksaray, Turkey | ||
2Department of Mathematics, Faculty of Science, Nevsehir Haci Bektas Veli University, Nevsehir, Turkey | ||
تاریخ دریافت: 07 بهمن 1399، تاریخ بازنگری: 28 اردیبهشت 1400، تاریخ پذیرش: 10 مرداد 1400 | ||
چکیده | ||
We indicate that the systems of difference equations $$ x_{n+1}=f^{-1}\big( af\left( p_{n-1}\right)+bf\left( q_{n-2}\right) \big) , \ \ y_{n+1}=f^{-1}\big( af\left( r_{n-1}\right)+bf\left( s_{n-2}\right) \big) ,\ \ n\in \mathbb{N}_{0},$$ where the sequences $p_{n}$, $q_{n}$, $r_{n}$, $s_{n}$ are some of the sequences $x_{n}$ and $y_{n}$, $f : D_f \longrightarrow \mathbb{R}$ be a $ ``1-1" $ continuous function on its domain $D_f \subseteq \mathbb{R}$, initial values $x_{-j}$, $y_{-j}$, $j\in\{0,1,2\}$ are arbitrary real numbers in $D_f$ and the parameters $a,b $ are arbitrary complex numbers, with $b\neq 0$, can be solved in the closed form in terms of generalized Padovan sequences. | ||
کلیدواژهها | ||
system of difference equations؛ solution of closed form؛ Padovan number | ||
مراجع | ||
[1] Y. Akrour, N. Touafek and Y. Halim, On a system of difference equations of second order solved in a closed form. Miskolc Math. Notes. 20(2) (2019) 701–717. [2] AM. Alotaibi, MSM. Noorani and MA. El-Moneam, On the solutions of a system of third order rational difference equations. Discrete Dyn. Nat. Soc. 2018 (2018).[3] EM. Elabbasy and EM. Elsayed, Dynamics of a rational difference equation. Chin. Ann. Math. Ser. B.30(2) (2009) 187–198. [4] EM. Elabbasy, HA. El-Metwally and EM. Elsayed, Global behavior of the solutions of some difference equations. Adv. Difference Equ. 2011(1) (2011) 28. [5] EM. Elabbasy and SM. Eleissawy, Qualitative properties for a higher order rational difference equation. Fasc. Math. 50 (2013) 33–50. [6] MM. El-Dessoky and EM. Elsayed, On the solutions and periodic nature of some systems of rational difference equations. J. Comput. Anal. Appl. 18(2) (2015) 206–218. [7] H. El-Metwally, Solutions form for some rational systems of difference equations. Discrete Dyn. Nat. Soc. 2013 (2013) 1–10. [8] EM. Elsayed, On the solutions and periodic nature of some systems of difference equations. Int. J. Biomath. 7(6) (2014) 1450067. [9] EM. Elsayed and AM. Ahmed, Dynamics of a three-dimensional systems of rational difference equations. Math. Methods Appl. Sci. 5(39) (2016) 1026–1038. [10] EM. Elsayed, F. Alzahrani, I. Abbas and NH. Alotaibi, Dynamical behavior and solution of nonlinear difference equation via Fibonacci sequence. J. Appl. Anal. Comput. 10(1) (2019) 282–296. [11] A. Gelisken and M. Kara, Some general systems of rational difference equations. J. Difference Equ. 396757 (2015) 1–7. [12] Y. Halim, N. Touafek and Y. Yazlik, Dynamic behavior of a second-order nonlinear rational difference equation. Turkish J. Math. 39(6) (2015) 1004–1018. [13] Y. Halim and JFT. Rabago, On the solutions of a second-order difference equation in terms of generalized Padovan sequences. Math. Slovaca. 68(3) (2018) 625–638. [14] TF. Ibrahim and N. Touafek, On a third order rational difference equation with variable coefficients. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms. 20(2) (2013) 251–264. [15] M. Kara and Y. Yazlik, Solvability of a system of nonlinear difference equations of higher order. Turkish J. Math. 43(3) (2019) 1533–1565. [16] M. Kara, Y. Yazlik and DT. Tollu, Solvability of a system of higher order nonlinear difference equations. Hacet. J. Math. Stat. 49(5) (2020) 1566–1593. [17] M. Kara, N. Touafek and Y. Yazlik, Well-defined solutions of a three-dimensional system of difference equations. Gazi Univ. J. Sci. 33(3) (2020) 767–778. [18] M. Kara and Y. Yazlik, On the system of difference equations xn = xn−2yn−3 yn−1(an+bnxn−2yn−3) , yn = yn−2xn−3 xn−1(αn+βnyn−2xn−3) . J. Math. Extension. 14(1) (2020) 41–59. [19] M. Kara, DT. Tollu and Y. Yazlik, Global behavior of two-dimensional difference equations system with two period coefficients. Tbil. Math. J. 13(4) (2020) 49–64. [20] M. Kara and Y. Yazlik, On a solvable three-dimensional system of difference equations. Filomat. 34(4) (2020) 1167–1186. [21] A. Khelifa, Y. Halim, A. Bouchair and M. Berkal, On a system of three difference equations of higher order solved in terms of Lucas and Fibonacci numbers. Math. Slovaca. 70(3) (2020) 641–656. [22] A. Sanbo and EM. Elsayed, Analytical study of a system of difference equation. Asian Res. J. Math. 14(1) (2019) 1–18. [23] S. Stević, On a two-dimensional solvable system of difference equations. Electron. J. Qual. Theory Differ. Equ. 104 (2018) 1–18. [24] S. Stević, B. Iričanin, W. Kosmala and Z. Šmarda, Representation of solutions of a solvable nonlinear difference equation of second order. Electron. J. Qual. Theory Differ. Equ. 95 (2018) 1–18. [25] S. Stević, B. Iričanin, W. Kosmala, Representations of general solutions to some classes of nonlinear difference equations. Adv. Difference Equ. 2019(1) (2019) 1–21. [26] N. Taskara, DT. Tollu, and Y. Yazlik, Solutions of rational difference system of order three in terms of Padovan numbers. J. Adv. Res. Appl. Math. 7(3) (2015) 18–29. [27] DT. Tollu, Y. Yazlik and N. Taskara, On the solutions of two special types of Riccati difference equation via Fibonacci numbers. Adv. Difference Equ. 174 (2013) 1–7. [28] DT. Tollu, Y. Yazlik and N. Taskara, On fourteen solvable systems of difference equations. Appl. Math. Comput. 233 (2014) 310–319. [29] DT. Tollu, Y. Yazlik and N. Taskara, On a solvable nonlinear difference equation of higher order. Turkish J. Math. 42 (2018) 1765–1778. [30] DT. Tollu and I. Yalcinkaya, Global behavior of a theree-dimensional system of difference equations of order three. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68(1) (2018) 1–16.[31] N. Touafek, On a second order rational difference equation. Hacet. J. Math. Stat. 41 (2012) 867–4874. [32] N. Touafek and EM. Elsayed, On the periodicity of some systems of nonlinear difference equations. Bull. Math. Soc. Sci. Math. Roumanie. 55(103) (2012) 217–224. [33] N. Touafek and EM. Elsayed, On a second order rational systems of difference equations. Hokkaido Math. J. 44 (2015) 29–45. [34] I. Yalcinkaya and C. Cinar, On the solutions of a system of difference equations. Internat. J. Math. Stat. 9(11) (2011) 62–67. [35] I. Yalcinkaya and DT. Tollu, Global behavior of a second order system of difference equations. Adv. Stud. Contemp. Math. 26(4) (2016) 653-667. [36] Y. Yazlik, DT. Tollu nd N. Taskara, On the solutions of difference equation systems with Padovan numbers. Appl. Math. 4 (2013) 15–20. [37] Y. Yazlik, DT. Tollu and N. Taskara, On the solutions of a three-dimensional system of difference equations. Kuwait J. Sci. 43(1) (2016) 95–111. [38] Y. Yazlik and M. Kara, On a solvable system of difference equations of fifth-order. Eskisehir Tech. Univ. J. Sci. Tech. B-Theoret. Sci. 7(1) (2019) 29–45. [39] Y. Yazlik and M. Kara, On a solvable system of difference equations of higher-order with period two coefficients. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68(2) (2019) 1675–1693. | ||
آمار تعداد مشاهده مقاله: 44,165 تعداد دریافت فایل اصل مقاله: 373 |