
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,756 |
تعداد دریافت فایل اصل مقاله | 7,656,167 |
Rational maps whose Julia sets are quasi circles | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، شماره 2، بهمن 2021، صفحه 2041-2048 اصل مقاله (470.47 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.5341 | ||
نویسندگان | ||
Hassanein Q. Al-Salami* 1؛ Iftichar Al-shara2 | ||
1Department of Biology, College of Sciences, University of Babylon, Iraq | ||
2Department of Mathematics, College of Education of Pure Sciences, University of Babylon, Iraq | ||
تاریخ دریافت: 21 اسفند 1399، تاریخ بازنگری: 06 تیر 1400، تاریخ پذیرش: 18 تیر 1400 | ||
چکیده | ||
In this paper, we give a family of rational maps whose Julia sets are quasicircles also we the boundaries of $I_0\ , I_\infty$ are quasicircles , we have the family of complex rational maps are given by \begin{equation}\label{e1} \mathcal{Q}_\alpha(Z)=2\alpha^{1-n}\ Z^n -\frac{z^n \left(z^{2n}-\alpha^{n+1}\right)}{z^{2n}-\alpha^{3n-1}}, \end{equation} where $n\geq 2$ and $\alpha \in C\backslash \{0\},$ but $\alpha^{2n-2}\neq 1,\;\;\alpha^{1-n}\neq 1.$ | ||
کلیدواژهها | ||
Julia Sets؛ Fatou Sets؛ Singular Perturbation؛ Quasi circles | ||
مراجع | ||
[1] A. Beardon, Iteration of Rational Functions, Grad. Texts in Math., 132, Springer-Verlag, New York, 1991. [2] L. Carleson and T. Gamelin, Complex Dynamics, Springer-Verlag, New York, 1993. [3] R. Devaney, D. Look, D. Uminsky, The escape trichotomy for singularly perturbed rational maps, Indiana Univ. Math. J. 54 (2005) 1621-1634. [4] R.L. Devaney, Singular perturbations of complex polynomials, Bull. Amer. Math. Soc. 50 (2013) 391–429.[5] A. Douady and J. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. Ec. Norm. Super. 18 (1985) 287–343. [6] A. Garijo and S. Godillon, On McMullen-Like mappings, J. Fractal Geom. 2 (2015) 249–279. [7] A. Garijo, S.M. Marotta and E.D. Russell, Singular perturbations in the quadratic family with multiple poles, J. Diff. Equ. Appl. 19 (2013) 124–145. [8] J. Fu and F. Yang, On the dynamics of a family of singularly perturbed rational maps, J. Math. Anal. Appl. 424 (2015) 104–121. [9] J. Fu and Y. Zhang, Connectivity of the Julia sets of singularly perturbed rational maps, Proc. Indian Acad. Sci. Math. Sci. 29(3) (2013) 239–245. [10] D. M. Look, Singular perturbations of complex polynomials and circle inversion maps, Boston University, Ph.D. Thesis, 2005. [11] C. McMullen, Automorphisms of rational maps,in holomorphic functions and moduli I, Math. Sci. Res. Inst. Publ., 10 Springer, 1988. [12] W. Qiu, X. Wang and Y. Yin, Dynamics of McMullen maps, Adv. Math. 229 (2012) 2525–2577. [13] P. Roesch, On local connectivity for the julia set of rational maps: newton’s famous example, Ann. Math. 168 (2008) 127–174. [14] Y. Xiao, W. Qiu and Y. Yin, On the dynamics of generalized McMullen maps, Ergod. Th. Dyn. Syst. 34 (2014) 2093–2112. [15] Y. Wang, F. Yang, S. Zhang and L. Liao, Escape quartered theorem and the connectivity of the Julia sets of a family of rational maps, Disc. Contin. Dyn. Syst. 39 (2019) 5185–5206. | ||
آمار تعداد مشاهده مقاله: 15,495 تعداد دریافت فایل اصل مقاله: 364 |