
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,777 |
تعداد دریافت فایل اصل مقاله | 7,656,172 |
On approximation by Szasz-Mirakyan-Schurer-Kantrovich operators preserving $e^{−bx}, b > 0$ | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، شماره 2، بهمن 2021، صفحه 2351-2358 اصل مقاله (431.94 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.5380 | ||
نویسندگان | ||
Abdulsattar Ali Hussein* 1؛ Alaa Adnan Auad2 | ||
1aUniversity of Anbar, Education College for women, Ramadi, Iraq | ||
2University of Anbar, Education College for pure science, Department of Mathematics, Ramadi, Iraq | ||
تاریخ دریافت: 15 اسفند 1399، تاریخ بازنگری: 06 تیر 1400، تاریخ پذیرش: 21 تیر 1400 | ||
چکیده | ||
Through this treatise, a study has been submitted about modified of Szasz-Mirakyan-Schurer-Kantrovich operators which that preserving \(e^{- bx\ },b > 0\) function. We interpret and study the uniform convergence of the modern operators to \(\text{\ f}\). Also, by analyzing the asymptotic conduct of our operator. | ||
کلیدواژهها | ||
Szasz-mirakyan-kantorovich operators؛ Exponential function؛ linear positive operators | ||
مراجع | ||
[1] T. Acar, A. Aral and H. Gonska, On Szasz–Mirakyan operators preserving e 2ax, a > 0, Mediterr. J. Math. 14 (2017) 1–14. [2] J. M. Aldaz and H. Render, Optimality of generalized Bernstein operators, J. Approx. Theory 162 (2010) 1407– 1416. [3] F. Altomare, M. Cappelletti and V. Leonessa, On a generalization of Sz´asz–Mirakjan–Kantorovich operators, Results Math. 63 (2012) 837–863. [4] K. J. Ansari, M. Mursaleen, K.P.M. Shareef and M. Ghouse, Approximation by modified Kantorovich-Sz´asz type operators involving Charlier polynomials, Adv. Diff. Equ. 1 (2020). [5] A. Aral, D. Inoan and I. Ra¸sa, Approximation properties of Sz´asz–Mirakyan operators preserving exponential functions, Positivity, 23 (2019) 233–246. [6] R. Aslan and A. ˙Izgi,Approximation by One and Two Variables of the Bernstein-Schurer-Type Operators and Associated GBS Operators on Symmetrical Mobile Interval, J. Funct. Spaces 2021, Article ID 9979286, 12 pages. [7] M. Bodur, H. Karsli and F. Ta¸sdelen, Urysohn Type Schurer Operators, Results Math. 75 (2020) 96. [8] E. Deniz, A. Aral and V. Gupta, Note on Sz´asz-Mirakyan-Durrmeyer operators preserving e 2ax, a > 0, Numerical Funct. Anal. Opt. 39 (2018) 201–207. [9] O. Duman, M.A. Ozarslan and B. Della Vecchia,Modified Sz´asz–Mirakjan–Kantorovich operators preserving linear functions, Turk. J. Math. 33 (2009) 151–158. [10] S. A. Holho, The rate of approximation of functions in an infinite interval by positive linear operators, Stud. Univ. Babe¸s-Bolyai Math. 2 (2010) 133–142. [11] L.V. Kantorovich, Sur Certain Developpements Suivant les Polynomes de la Forme de S. Bernstein, I, II, C.R. Acad. URSS, 1930. [12] A. Kumar and R. Pratap, Approximation by modified Sz´asz-Kantorovich type operators based on Brenke type polynomials, Ann. Dell’Univ. Ferrara 22 (2021) 1–8. [13] F. Schurer,Linear Positive Operators in Approximation Theory, Math. Inst. Techn. Univ. Delft Report, 1962. [14] O. Sz´asz, Generalization of S. Bernstein’s polynomials to the infinite interval, J. Res. Natl. Bur. Stand. 45 (1950) 239–245. | ||
آمار تعداد مشاهده مقاله: 15,597 تعداد دریافت فایل اصل مقاله: 466 |