
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,934 |
تعداد دریافت فایل اصل مقاله | 7,656,390 |
Some results on fuzzy soft sesquilinear functional | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، شماره 2، بهمن 2021، صفحه 2373-2382 اصل مقاله (417.03 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.5381 | ||
نویسندگان | ||
Salim Dawood Mohsen1؛ Jaafer Hmood Eidi* 1؛ ayed hashoosh2 | ||
1Mustansiriyah University, College of Education, Baghdad-Iraq | ||
2Thi-Qar University, College of Education of Pure Sciences, Iraq | ||
تاریخ دریافت: 07 اردیبهشت 1400، تاریخ بازنگری: 25 خرداد 1400، تاریخ پذیرش: 07 مرداد 1400 | ||
چکیده | ||
In this paper, we study and discussion new kinds of Sesquilinear functional which is fuzzy soft Sesquilinear functional and given some properties with characterization and also theories related on fuzzy soft Sesquilinear functional have been given. Additionally, we present the relationship between this kind and other kinds | ||
کلیدواژهها | ||
Fuzzy soft set؛ fuzzy soft Hilbert space؛ fuzzy soft adjoint operator | ||
مراجع | ||
[1] S. Bayramov and C. Gunduz, Soft locally compact spaces and soft paracompact spaces, J. Math. Syst. 3 (2013) 122–130. [2] T. Beaula and M. M. Priyanga, A new notion for fuzzy soft normed linear space, Int. J. Fuzzy Math. Arch. 9(1) (2015) 81–90. [3] S. Das and S.K. Samanta, On soft inner product spaces, Ann. Fuzzy Math. Inf. 6(1) (2013) 151–170. [4] N. Faried, M.S.S. Ali and H.H. Sakr, On fuzzy soft Hermition operators, Sci. J. 9(1) (2020) 73–82. [5] N. Faried, M. S. S. Ali and H. H. Sakr, On fuzzy soft linear operators in fuzzy soft Hilbert spaces, Abst. Appl. Anal. 2020 (2020). [6] N. Faried, M.S.S. Ali and H.H. Sakr, Fuzzy soft Hilbert spaces, Math. Stat. 8(3) (2020). [7] A.Z. Khameneh, A. Kili¸cman and A.R. Salleh, Parameterized norm and parameterized fixed- point theorem by using fuzzy soft set theory, arXiv, 15, (2013) 2.9, 2.10, 2.11, 2.12, 2.13, 2.14. [8] P.K. Maji, R. Biswas and A.R. Roy, Fuzzy soft set, J. Fuzzy Math. 9(3) (2001) 677–692. [9] D. Molodtsov, Soft set theory-First results, Comput. Math. Appl. 37 (1999) 19–31. [10] T. J. Neog, D. K. Sut, and G. C. Hazarika, Fuzzy soft topological spaces, Int. J. Latest Trend. Math. 2(1) (2012) 54–67. [11] S. Das and S.K. Samanta, Projection operators on soft inner product spaces, Ann. Fuzzy Math. Inf. 11(5) (2016) 809–827. [12] M.I. Yazar, C.G. Aras and S. Bayramov, Results on soft Hilbert spaces, TWMS J. App. Eng. Math. 9(1) (2019) 159–164. [13] M. I. Yazar, C. G. Aras, S. Bayramov and C. Gunduz, A new view on soft normed spaces, Int. Math. For. 9(24) (2014) 1149–1159. [14] L.A. Zadeh, Fuzzy sets, Inf. Cont. 8(3) (1965) 338–353. | ||
آمار تعداد مشاهده مقاله: 15,511 تعداد دریافت فایل اصل مقاله: 528 |