
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,918 |
تعداد دریافت فایل اصل مقاله | 7,656,374 |
Design and simulation of optical logic gates based on insulator - metal – insulator (IMI) plasmonic waveguides for optical communications | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، شماره 2، بهمن 2021، صفحه 2483-2497 اصل مقاله (19.33 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.5392 | ||
نویسندگان | ||
Wissam Abed Jasim* 1؛ Faris Mohammed Ali1؛ Ahmed Kareem Abdullah1؛ Mohammed Ahmed AbdulNabi2 | ||
1Engineering Technical College-Najaf, Al-Furat Al-Awsat Technical University, 31001 Najaf, Iraq. | ||
2Kufa University, College of Engineering, Department of Electronics and Communications Engineering, 54003, Iraq. | ||
تاریخ دریافت: 01 فروردین 1400، تاریخ بازنگری: 25 اردیبهشت 1400، تاریخ پذیرش: 17 خرداد 1400 | ||
چکیده | ||
In this study, a structure has been proposed implementing the optical Plasmonic logic gates (OR, NOR, AND, NAND, NOT) using the linear Plasmonic waveguide and the double ring resonator. The results of these gates were analyzed and simulated by means of Comsol Multiphysics (5.6) using Finite Element Analysis (2-FEM). These gates were implemented in the same structure depending on the characteristic of constructive and destructive optical interference between the signals propagating in the input ports and the control port, the phase and direction of those signals, as well as the positions of these ports. Hence, the performance of these gates was measured according to two criteria, first, the optical transmission ratio and the second, the contrast ratio, which is the ratio between the transmitter ON state of logic (1) and OFF for logic (0). | ||
کلیدواژهها | ||
Optical logic gates؛ Plasmonic waveguide (IMI)؛ surface plasmon polarization (SSP) | ||
مراجع | ||
[1] A.F. Aguiar, D.M.d.C. Neves and J.B.R. Silva, All-optical logic gates devices based on SPP coupling between graphene sheets, J. Microwaves, Optoel. Elect. Appl. 17(2) (2018) 208–216. [2] S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, J.-Y. Laluet and T.W. Ebbesen, Channel plasmon subwavelength waveguide components including interferometers and ring resonators, Nature 440(7083) (2006) 508–511. [3] D. Choi, C.K. Shin, D. Yoon, D.S. Chung, Y.W. Jin and L.P. Lee, Plasmonic optical interference, Nano Lett. 14(6) (2014) 3374–3381. [4] A. Dolatabady and N. Granpayeh, All optical logic gates based on two dimensional plasmonic waveguides with nanodisk resonators, J. Optic. Soc. Korea, 16(4) (2012) 432–442. [5] A. Dolatabady, N. Granpayeh and M. Abedini, Frequency-tunable logic gates in graphene nano-waveguides, Photonic Network Commun. 39(3) (2020) 187–194. [6] Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N.J. Halas and H. Xu, Branched silver nanowires as controllable plasmon routers, Nano Lett. 10(5) (2010) 1950–1954. [7] U. Fano, The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves), JOSA 31(3) (1941) 213–222. [8] Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo and X. Luo, Transmission characteristics of the aperture-coupled rectangular resonators based on metal–insulator–metal waveguides, Optics Commun. 300 (2013) 277–281. [9] C. Jianjun, L. Zhi, L. Ming, F. Xiuli, X. Jinghua and G. Qihuang, Plasmonic Y-splitters of high wavelength resolution based on strongly coupled-resonator effects, Plasm. 7(3) (2012) 441–445. [10] S. Kaur and R.-S. Kaler, Ultrahigh speed reconfigurable logic operations based on single semiconductor optical amplifier, J. Optical Soci. Korea 16(1) (2012) 13–16. [11] E. Kretschmann and H. Raether, Radiative decay of non-radiative surface plasmons excited by light, Z. Naturf. A 23(12) (1968) 2135–2136. [12] Z. Liu, L. Ding, J. Yi, Z. Wei and J. Guo, Design of a multi-bits input optical logic device with high intensity contrast based on plasmonic waveguides structure, Optics Commun. 430 (2019) 112–118. [13] Y. Liu, F. Qin, Z.-M. Meng, F. Zhou, Q.-H. Mao and Z.-Y. Li, All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs, Optics Exp. 19(3) (2011) 1945–1953. [14] Z. Lu and W. Zhao, Nanoscale electro-optic modulators based on graphene-slot waveguides, JOSA B, 29(6) (2012) 1490–1496. [15] S.A. Maier, Plasmonics: Fundamentals and Applications, Springer Science & Business Media, 2007. [16] Mainka, S. Sharma, R. Zafar, M.H. Mahdieh, G. Singh and M. Salim, High Contrast Ratio Based All-Optical OR and NOR Plasmonic Logic Gate Operating at E Band, In: V. Janyani, G. Singh, M. Tiwari, A. d’Alessandro (eds) Optical and Wireless Technologies, Lecture Notes in Electrical Engineering, 546 (2020) 325–332. [17] I.S. Maksymov, Optical switching and logic gates with hybrid plasmonic–photonic crystal nanobeam cavities, Physics Lett. A 375(5) (2011) 918–921. [18] D. Maystre, Theory of Wood’s Anomalies, In: S. Enoch, and N. Bonod (eds) Plasmonics, Springer Series in Optical Sci. 167 2012. [19] M. Moradi, M. Danaie and A.A. Orouji, Design of all-optical XOR and XNOR logic gates based on Fano resonance in plasmonic ring resonators, Optic. Quantum Elect. 51(5) (2019) 1–18.[20] N. Nozhat and N. Granpayeh, Analysis of the plasmonic power splitter and MUX/DEMUX suitable for photonic integrated circuits, Optics Commun. 284(13) (2011) 3449–3455. [21] N. Nozhat and N. Granpayeh, Switching power reduction in the ultra-compact Kerr nonlinear plasmonic directional coupler, Optics Commun. 285(6) (2012) 1555–1559. [22] G.-Y. Oh, D.G. Kim and Y.-W. Choi, All-optical logic gate using waveguide-type SPR with Au/ZnO plasmon stack, OECC 2010 Technical Digest, IEEE (2010) 374–375. [23] A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, Z. Phys. Hadrons Nuclei 216(4) (1968) 398–410. [24] Y. Qi, P. Zhou, T. Zhang, X. Zhang, Y. Wang, C. Liu, Y. Bai and X. Wang, Theoretical study of a multichannel Plasmonic waveguide notch filter with double-sided nanodisk and two slot cavities, Results Phys. 14 (2019) 102506. [25] L. Rayleigh, On the dynamical theory of gratings, Proc. Royal Society of London, Series A, Containing Papers Math. Phys. Char. 79(532) (1907) 399–416. [26] M.H. Rezaei, A. Zarifkar and M. Miri, Ultra-compact electro-optical graphene-based plasmonic multi-logic gate with high extinction ratio, Optical Mate. 84 (2018) 572–578. [27] J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White and M.L. Brongersma, Plasmonics for extreme light concentration and manipulation, Nature Mate. 9(3) (2010) 193–204. [28] A. Singh, A. Pal, Y. Singh and S. Sharma, Design of optimized all-optical NAND gate using metal-insulator-metal waveguide, Optik 182 (2019) 524–528. [29] J. Tao, Q.J. Wang, and X.G. Huang, All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material, Plasm. 6(4) (2011) 753–759. [30] C.A. Thraskias, E.N. Lallas, N. Neumann, L. Schares, B.J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold and I. Tomkos, Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications, IEEE Commun. Surv. Tutor. 20(4) (2018) 2758–2783. [31] B. Wang and G.P. Wang, Plasmon Bragg reflectors and nanocavities on flat metallic surfaces, Appl. Phys. Lett. 87(1) (2005) 013107. [32] Y.-D. Wu, Y.-T. Hsueh and T.-T. Shih, Novel all-optical logic gates based on microring metal-insulator-metal plasmonic waveguides, PIERS Proc. (2013) 169–172. [33] Q. Xu and M. Lipson, All-optical logic based on silicon micro-ring resonators, Optics Exp. 15(3) (2007) 924–929. [34] W. Yang, X. Shi, H. Xing and X. Chen, All-optical logic gates based on metallic waveguide arrays, Results Phys. 11 (2018) 837–841. | ||
آمار تعداد مشاهده مقاله: 15,664 تعداد دریافت فایل اصل مقاله: 722 |