
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,769 |
تعداد دریافت فایل اصل مقاله | 7,656,171 |
Existence result of global solutions for a class of generic reaction diffusion systems | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، Special Issue، اسفند 2021، صفحه 663-676 اصل مقاله (423.94 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.5403 | ||
نویسندگان | ||
Houssem Eddine Kadem؛ Salim Mesbahi* ؛ Saida Bendaas | ||
Fundamental and Numerical Mathematics Laboratory, Department of Mathematics, Faculty of Science, Ferhat Abbas University, Setif, Algeria | ||
تاریخ دریافت: 22 خرداد 1399، تاریخ بازنگری: 05 شهریور 1400، تاریخ پذیرش: 18 شهریور 1400 | ||
چکیده | ||
In this paper, we prove the existence of weak global solutions for a class of generic reaction diffusion systems for which two main properties hold: the quasi-positivity and a triangular structure condition on the nonlinearities. The main result is a generalization of the work already done on models of a single reaction-diffusion equation. The model studied is applied in image recovery and contrast enhancement. It can also be applied to many models in biology and radiology. | ||
کلیدواژهها | ||
reaction diffusion system؛ global existence؛ Schauder fixed point theorem | ||
مراجع | ||
[1] A. Aarab, N. Alaa and H. Khalfi, Generic reaction diffusion model with application to image restoration and enhancement, Elect. J. Diff. Eq. 125 (2018) 1–12. [2] N. Alaa and M. Zirhem, Bio-inspired reaction diffusion system applied to image restoration, Int. J. Bio-Inspired Comput. 12(2) (2018) 128–137. [3] N. Alaa, M. Ait Oussous and Y. Ait Khouya, Anisotropic and nonlinear diffusion applied to image enhancement and edge detection, Int. J. Computer Appl. Tech. 49(2) (2014) 122–133. [4] N. Alaa, M. Ait Oussous, W. Bouarifi and D. Bensikaddour, Image restoration using a reaction diffusion process, Elect. J. Diff. Eq. 197 (2014) 1–12. [5] L. Alvarez, F. Guichard, P.L. Lions and J.M. Morel, Axioms and fundamental equations of image processing, Arch. Rational Mech. Anal. 123 (1993) 199–257. [6] L. Alvarez, P.L. Lions and J.M. Morel, Image selective smoothing and edge detection by nonlinear diffusion II, SIAM J. Numerical Anal. 29(3) (1992) 845–866. [7] H. Amann, Dynamic theory of quasilinear parabolic equations, ii. reaction diffusion systems, Differential Integral Equations Vol. 3 (1990), no. 1, 13–75. [8] P. Benilan and H. Brezis, Solutions faibles d’´equations d’´evolution dans les espaces de Hilbert, Ann. Inst. Fourier (Grenoble), Tome 22(2) (1972) 311–329. [9] F. Catt´e, P.L. Lions, J.M. Morel and T. Coll, Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numerical Anal. 29(1) (1992) 182–193. [10] W.S. Du and Th. M. Rassias, Simultaneous generalizations of known fixed point theorems for a Meir-Keeler type condition with applications, Int. J. Nonlinear Anal. Appl. 11(1) (2020) 55–66. [11] J. Fr¨ohlich and J. Weicker, Image Processing Using a Wavelet Algorithm for Nonlinear Diffusion, Report 104, Laboratory of Technomathematics, University of Kaiserslautern, Kaiserslautern, 1994. [12] S.M.R. Hashemi, H. Hassanpour, E. Kozegar and T. Tan, Cystoscopic Image Classi cation Based on Combining MLP and GA, Int. J. Nonlinear Anal. Appl. 11(1) (2020) 93–105.[13] S.M.R. Hashemi, H. Hassanpour, E. Kozegar and T. Tan, Cystoscopy image classification using deep convolutional neural networks, Int. J. Nonlinear Anal. Appl. 10(1) (2019) 193–215. [14] S. Kant and V. Kumar, Dynamical behavior of a stage structured prey-predator model, Int. J. Nonlinear Anal. Appl. 7(1) (2016) 231–241. [15] O.A. Ladyzhenskaya, V.A. Solonnikov and N.N. Ural’tseva, Lineinye i Kvazilineinye Uravneniya Parabolicheskogo Tipa (Linear and Quasi-Linear Equations of Parabolic Type), Moscow, Nauka, 1967. [16] J.L. Lions, Equations Diff´erentielles Operationnelles et Probl`emes aux Limites, vol. 111, Springer-Verlag, 2013. [17] S. Mesbahi and N. Alaa, Mathematical analysis of a reaction diffusion model for image restoration, Ann. Univ. Craiova, Math. Comp. Sci. Ser. 42(1) (2015) 70–79. [18] S. Morfu, On some applications of diffusion processes for image processing, Phys. Lett. A 373(29) (2009) 24–44. [19] J.D. Murray, Mathematical Biology I : An Introduction, Volume I, Springer-Verlag, 3rd edition, 2003. [20] J.D. Murray, Mathematical Biology II : Spatial Models and Biochemical Applications, volume II, Springer-Verlag, 3rd edition, 2003. [21] V. Pata, Fixed Point Theorems and Applications, Springer, 2019. [22] M. Pierre, Global existence in reaction diffusion systems with dissipation of mass: a survey, Milan J. Math. 78(2) (2010) 417–455. [23] P. Quittner and P. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States, 2nd ed., Springer, Birkh¨auser, 2019. [24] D. Schmitt, Existence Globale ou Explosion Pour les Systemes De r´eaction-Diffusion Avec Contrˆole de Masse, Ph.D. thesis, Nancy 1, 1995. [25] J. Simon, Compact sets in the space L p (0, T, B), Ann. Math. Pura Appl. 146 (1986) 65–96. [26] J. Weicker, Efficient image segmentation using partial differential equations and morphology, Pattern Recog. 34(9) (2001) 1813-1824. [27] J. Weicker and C. Schn¨orr, PDE-based preprocessing of medical images. Kunstliche Intelligenz, 3 (2000) 5–10. [28] J. Weicker, Anisotropic Diffusion in Image Processing, PhD thesis, Universit¨at Kaiserslautern, Kaiserslautern, Germany, 1996. [29] S. Xu, S. Chenb and S. Aleksi´c, Fixed point theorems for generalized quasi-contractions in cone b-metric spaces over Banach algebras without the assumption of normality with applications, Int. J. Nonlinear Anal. Appl. 8(2) (2017) 335–353. | ||
آمار تعداد مشاهده مقاله: 43,496 تعداد دریافت فایل اصل مقاله: 371 |