
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,948 |
تعداد دریافت فایل اصل مقاله | 7,656,401 |
A second order fitted operator finite difference scheme for a modified Burgers equation | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، Special Issue، اسفند 2021، صفحه 689-698 اصل مقاله (385.28 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.5405 | ||
نویسندگان | ||
Nana Adjoah Mbroh1؛ Clovis Oukouomi Noutchie* 2؛ Rodrigue Yves M'pika Massoukou1 | ||
1Pure and Applied Analytics Focus Area, North West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa | ||
2Pure and Applied Analytics Focus Area, School of Mathematical and Statistical Sciences, North West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa | ||
تاریخ دریافت: 19 شهریور 1399، تاریخ بازنگری: 04 آذر 1399، تاریخ پذیرش: 21 آذر 1399 | ||
چکیده | ||
In this paper, a one-dimensional modified Burgers' equation is considered for different Reynolds numbers. For very high Reynolds numbers, the solution possesses a multiscale character in some part of the independent domain and thus can be classified as a singularly perturbed problem. A numerical scheme that uses a fitted operator finite difference scheme to solve the spatial derivatives and the implicit Euler scheme for the time derivative is proposed to solve the modified Burgers' equation via Rothe's method. It is important to note that the proposed fitted operator finite difference scheme is based on the midpoint upwind scheme. The stability of the scheme is established and the error associated with each discretisation is estimated. Numerical simulations are carried out to validate the theoretical findings. | ||
کلیدواژهها | ||
Singularly perturbed problems؛ Modified Burger's equation؛ Uniform convergence | ||
مراجع | ||
[1] S. Bendaasa, N. Alaab, Periodic wave shock solutions of Burgers equations, A new approach, Int. J. Nonlinear Anal. Appl. 10(1) (2019) 119–129. [2] A. G. Bratsos, A fourth-order numerical scheme for solving the modified Burgers equation, Comput. Math. Appl. 60(5) (2010) 1393–1400. [3] J.D. Cole, On a quasi-linear parabolic equation occurring in aerodynamics, Quart. Appl. Math. 9(3) (1951) 225–236. [4] F. Erdogan and M.G. Sakar, A quasilinearization technique for the solution of singularly perturbed delay differential equation, Math. Natural Sci. 2(1) (2018) 1–7. [5] S.L. Harris, Sonic shocks governed by the modified Burgers’ equation, Euro. J. Appl. Math. 7(2) (1996) 201–222. [6] M.K. Kadalbajoo and A. Awasthi, The partial differential equation ut + uux = uxx, Commun. Pure Appl. Math. 3(3) (1950) 201–230. [7] M.K. Kadalbajoo and A. Awasthi, Uniformly convergent numerical method for solving modified Burgers’ equations on a non-uniform mesh, J. Numerical Math. 16(3) (2008) 217–235. [8] V. Gupta and M. Kadalbajoo, Numerical approximation of modified Burger’s equation via hybrid finite difference scheme on layer-adaptive mesh, Neural Paral. Sci. Comput. 18 (2010) 167–194. [9] J.J.H. Miller, E. O’Riordan and G.I. Shishkin, Fitted Numerical Methods for Singularly Perturbed Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimension, World Scientific Publications, Singapore, 2012. [10] R.E. Mickens, Non-Standard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994. [11] G.A. Nariboli and W.C. Lin, A new type of Burgers’ equation, Z. Angew. Math. Mech. 53(8) (1973) 505–510. [12] L. Liu, G. Long and Z. Cen, A robust adaptive grid method for a nonlinear singularly perturbed differential equation with integral boundary condition, Numerical Algor. 83(2) (2020) 719–739. [13] K.C. Patidar, High order fitted operator numerical method for self-adjoint singular perturbation problems, Appl. Math. Comput. 171(1) (2005) 547–566. [14] A.S.V. Ravi Kanth and P.M.M. Kumar, Numerical technique for solving nonlinear singularly perturbed delay differential equations, Math. Model. Anal. 23(1) (2018) 64–78. [15] H. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems, Springer Science & Business Media, 2008. [16] Y. Ucar, N. M. Yagmurlu and O. Tasbozan, Numerical solutions of the modified Burgers’ equation by finite difference methods, J. Appl. Math. Stat. Inf. 13(1) (2017) 19–30. [17] H. Zeidabadi, R. Pourgholi and S. H. Tabasi, Solving a nonlinear inverse system of Burgers equations, Int. J. Nonlinear Anal. Appl. 10(1) (2019) 35–54. | ||
آمار تعداد مشاهده مقاله: 43,550 تعداد دریافت فایل اصل مقاله: 393 |