
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,929 |
تعداد دریافت فایل اصل مقاله | 7,656,387 |
Various optical solutions to the (1+1)-Telegraph equation with space-time conformable derivatives | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، Special Issue، اسفند 2021، صفحه 767-780 اصل مقاله (344.2 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.5431 | ||
نویسندگان | ||
BOUBEKEUR GASMI1؛ Arezki Kessi2؛ Zakia Hammouch* 3، 4، 5 | ||
1Higher school of Management and Digital Economy, Kolea, Algeria | ||
2Dynamical Systems Laboratory, University of Sciences and Technology USTHB, Algeria | ||
3Division of Applied Mathematics,Thu Dau Mot University,Binh Duong Province,Vietnam | ||
4Department of Medical Research,China Medical University Hospital,Taichung,Taiwan | ||
5Department of Sciences,Ecole normale superieure,Moulay Ismail University of Meknes,Morocco | ||
تاریخ دریافت: 12 خرداد 1399، تاریخ پذیرش: 26 آذر 1399 | ||
چکیده | ||
This paper presents a new sub-equation method based on an auxiliary equation which is implemented via the well-known generalized Kudryashov method, to construct new traveling waves to the Telegraph equation with time and space conformable derivatives. To illustrate its effectiveness, it was tested for seeking traveling wave solutions to the (1+1)-Telegraph equation with space-time conformable derivatives. With the help of Maple Software we derive some new solitary waves solutions. It can be concluded that the proposed method is an accurate tool for solving several kind of nonlinear evolution equations. | ||
کلیدواژهها | ||
(1+1)-Telegraph equation؛ Generalized Kudryashov method؛ Conformable derivative؛ Auxiliary equation؛ Traveling wave؛ Optical solutions | ||
مراجع | ||
[1] E. Yusufoglu, A. Bekir, Solitons and periodic solutions of coupled nonlinear evolution equations by using the sine-cosine method, Int J Comput Math, 83(12) (2006) 915–924. [2] D.D. Ganji, A. Sadighi,Application of He’s homotopy-perturbation method to nonlinear coupled systems of reaction diffusion equations, Int J Nonlinear Sci Numer Simul, 7 (4) (2006) 411–418. [3] T. Ozis, A. Yildirim,Traveling wave solution of Korteweg-de Vries equation using He’s homotopy perturbation method,Int J Nonlinear Sci Numer Simul, 8 (2) (2007) 239–242. [4] AM Wazwaz,The tanh method for travelling wave solutions of nonlinear equations, Applied Mathematics and Computation, 154 (3) (2004) 713–723. [5] E. Fan, H. Zhang, A note on the homogeneous balance method, Phys Lett A, 246 (1998) 403–406. [6] M.L. Wang, Exact solutions for a compound KdV-Burgers equation, Phys Lett A, 213 (1996) 279. [7] M.A. Abdou, The extended F-expansion method and its application for a class of nonlinear evolution equations, Chaos, Solitons & Fractals, 31 (2007) 95–104. [8] J.L. Zhang, M.L. Wang, Y.M. Wang, Z.D. Fang, The improved F-expansion method and its applications, Phys Lett A, 350 (2006) 103–109.[9] SA El -wakil, M.A. Madkour, M.A. Abdou, Application of the Exp-function method for nonlinear evolution equations vith variable coefficients, Phys. Letters A 369 (2007), 62 – 69. [10] M.A. Abdou , A.A. Soliman and S.T. El-Basyony , New Application of the Exp-function for improved Boussinesq equation, Phys. Lett. A 369,(2007), 469– 475. [11] T. Ozis, C. Koroglu, A novel approch for solving the Fisher using Exp- function method, Physics Letters A 372 (2008) 3836– 3840. [12] M. Wang, X. Li, J. Zhang, The (G’/G)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics, Phys Lett A. 372 (2008) 417–23. [13] E.M.E. Zayed , K.A. Gepreel, The (G’/G)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics, J Math Phys. 50 (2009) 013502-13. [14] E.M.E. Zayed, New traveling wave solutions for higher dimensional nonlinear evolution equations using a generalized (G’/G)-expansion method, J Phys A Math Theor. 42 (2009) 195202-14. [15] H. Bulut, Y. Pandir, H.M. and Baskonus , Symmetrical hyperbolic Fibonacci function solutions of generalized Fisher equation with fractional order, AIP Conference Proceedings, 1558 (2013) 1914–1918. [16] Y.A. Tandogan, Y. Pandir, and Y. Gurefe, Solutions of the nonlinear differential equations by use of modified Kudryashov method, Turkish Journal of Mathematics and Computer Science, 1 (2013) 54–60. [17] Y. Pandir, Symmetric fibonacci function solutions of some nonlinear partial differential equations, Applied Mathematics Information Sciences, 8(5) (2014) 2237–2241. [18] E.M.E. Zayed, G.M. Moatimid, A.G. Al-Nowehy, The generalized Kudryashov method and its applications for solving nonlinear PDEs in mathematical physics, Scientific J Math Res. 5 (2015) 19–39. [19] E.M.E. Zayed, A.G. Al-Nowehy, Exact solutions of the Biswas-Milovic equation, the ZK (m,n,k) equation and the K (m,n) equation using the generalized Kudryashov method, Open phys. 14 (2016) 129–139. [20] E.M.E. Zayed, A.G. Al-Nowehy, Exact traveling wave solutions for nonlinear PDEs in mathematical physics using the generalized Kudryashov method, Serbian J Elec Eng. 13(2) (2016) 203–227. [21] L.A. Alhakim, A.A. Moussa, The double auxiliary equations method and its application to space-time fractional nonlinear equations, Journal of Ocean Engineering and Science, 4 (2019) 7–13. [22] A.M. Wazwaz, A sine-cosine method for handling nonlinear wave equations, Mathematical and Computer Modelling, 40 (2004) 499–508. [23] M.M. Ghalib, A.A. Zafar,Z. Hammouch, M.B. Riaz, K. Shabbir, Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary, Discrete and Continuous Dynamical Systems-S, 13(3) (2020) 683–693. [24] M. M. Ghalib, A.A. Zafar, M.B. Riaz, Z. Hammouch, and K. Shabbir, Analytical approach for the steady MHD conjugate viscous fluid flow in a porous medium with nonsingular fractional derivative Physica A: Statistical Mechanics and its Applications, 555 (2020) 123941. [25] D. Bienvenue, B. Gambo, J. Mibaille, Z. Hammouch and A. Houwe, Chirped Solitons with Fractional Temporal Evolution in Optical Metamaterials, Methods of Mathematical Modelling: Fractional Differential Equations, 205 (2019). [26] A.A. Zafar, M.B. Riaz and Z. Hammouch, A Class of Exact Solutions for Unsteady MHD Natural Convection Flow of a Viscous Fluid over a Moving Inclined Plate with Exponential Heating, Constant Concentration and Chemical Reaction, In International Conference on Computational Mathematics and Engineering Sciences (pp. 218-232). Springer, Cham (2019). [27] A. Houwe, J. Sabi’u, Z. Hammouch, and S.Y. Doka, Solitary pulses of the conformable derivative nonlinear differential equation governing wave propagation in low-pass electrical transmission line, Physica Scripta, 95 (4) (2019) 045203. [28] M. Savescu, K.R. Khan, P. Naruka, H. Jafari, L. Moraru, and A. Biswas, Optical solitons in photonic nano waveguides with an improved nonlinear Schrödinger’s equation, Journal of Computational and Theoretical Nanoscience, 10(5) (2013) 1182–1191. [29] A. Borhanifar, H. Jafari, and S.A. Karim, New solitons and periodic solutions for Thekadomtsev-Petviashvili equation, The Journal of Nonlinear Sciences and its Applications, 1(4) (2008) 224–229. [30] H. Jafari, A. Sooraki, and C.M. Khalique, Dark solitons of the Biswas–Milovic equation by the first integral method Optik, 124(19) (2013) 3929–3932. [31] R. Khalil,M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014) 65–70. [32] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279 (2015) 57–66. [33] T. Abdeljawad, Q.M. Al-Mdallal, F. Jarad, Fractional logistic models in the frame of fractional operators generated by conformable derivatives, Chaos, Solitons & Fractals, 119 (2019) 94–101.[34] M. Al-Refai, T. Abdeljawad, Fundamental results of conformable Sturm-Liouville eigenvalue problems, Complexity, 2017 (2017) 1–7. [35] D. Baleanu, F. Jarad, E. Uğurlu, Singular conformable sequential differential equations with distributional potentials, Quaestiones Mathematicae, 42(3) (2019) 277–287. [36] E. Set, A.O. Akdemir, A. Gözpinar, F. Jarad, (2019, October). Ostrowski type inequalities via new fractional conformable integrals, AIMS Mathematics, 4(6) (2019) 1684–1697. | ||
آمار تعداد مشاهده مقاله: 44,175 تعداد دریافت فایل اصل مقاله: 521 |