
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,929 |
تعداد دریافت فایل اصل مقاله | 7,656,387 |
New Fractional Operators Theory and Applications | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، Special Issue، اسفند 2021، صفحه 825-845 اصل مقاله (468.52 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.5462 | ||
نویسندگان | ||
Khudair Obeis Hussain* ؛ Naseif J. Al-Jawari؛ Abdul Khaleq O. Mazeel | ||
Department of Mathematics, College of Science, AL-Mustansiriyah University, Baghdad, Iraq | ||
تاریخ دریافت: 26 بهمن 1399، تاریخ بازنگری: 18 تیر 1400، تاریخ پذیرش: 10 مرداد 1400 | ||
چکیده | ||
In this article, we present a new fractional integral with a non-singular kernel and by using Laplace transform, we derived the corresponding fractional derivative. By composition between our fractional integration operator with classical Caputo and Riemann-Liouville fractional operators, we establish a new fractional derivative which is interpolated between the generalized fractional derivatives in a sense Riemann-Liouville and Caputo-Fabrizio with non-singular kernels. Additionally, we introduce the fundamental properties of these fractional operators with applications and simulations. Finally, a model of Coronavirus (COVID-19) transmission is presented as an application. | ||
کلیدواژهها | ||
Fractional integral؛ fractional derivative؛ non-singular kernels؛ Mittag-Leffler function؛ Coronavirus (COVID-19) | ||
مراجع | ||
[1] Mouaouine A, Boukhouima A, Hattaf K, Yousfi N. A fractional order SIR epidemic model with nonlinear incidence rate. Adv Differ Equations. 2018; 2018(1):1–9. [2] Boukhouima A, Hattaf K, Yousfi N. Dynamics of a fractional order HIV infection model with specific functional response and cure rate. Int J Differ Equations. 2017; 2017(1). [3] Magin RL. Fractional calculus in bioengineering. Vol. 2. Begell House Redding; 2006. [4] Acay B, Bas E, Abdeljawad T. Fractional economic models based on market equilibrium in the frame of different type kernels. Chaos, Solitons and Fractals. 2020; 130:109438. [5] U¸car S. Existence and uniqueness results for a smoking model with determination and education in the frame of non-singular derivatives. Discret Contin Dyn Syst - S. 2021; 14(7):2571-2589. [6] Moze M, Sabatier J, Oustaloup A. Theoretical developments and applications in physics and engineering. Adv Fract Calc. 2007; [7] Atangana A, Koca I. On the new fractional derivative and application to nonlinear Baggs and freedman model. J Nonlinear Sci Appl. 2016; 9(5):2467–2480. [8] Caponetto R, Dongola G, Fortuna L, Petras I. Fractional order systems. Modeling and control applications. Vol. Series A, World Scientific Series on Nonlinear Science. 2010. [9] Dos Santos JPC, Monteiro E, Vieira GB. Global stability of fractional SIR epidemic model. 2017; 5:1–7. [10] Fabrizio M. Fractional rheological models for thermomechanical systems. Dissipation and free energies. Fract Calc Appl Anal. 2014; 17(1):206–223. [11] Hilfer R. Fractional time evolution. Applications of fractional calculus in physics. 2000. 87–130 p. [12] Diethelm K. The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type. Vol. 2004, Lecture Notes in Mathematics. Springer Science & Business Media; 2010. 1–262 p. [13] Kilbas A, Srivastava H, Trujillo J. Theory and applications of fractional differential equations. Vol. 129, Journal of the Electrochemical Society. Elsevier; 2006. 2865 p. [14] Podlubny I. Fractional differential equations, Volume 198: An introduction to fractional derivatives, fractional differential equations, to methods of their. Elsevier; 1998. [15] Caputo M, Fabrizio M. A new definition of fractional derivative without singular kernel. Prog Fract Differ Appl. 2015; 1(2):73–85. [16] Caputo M, Fabrizio M. Applications of new time and spatial fractional derivatives with exponential kernels. Prog Fract Differ Appl. 2016; 2(1):1–11. [17] Atangana A, Baleanu D. New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model. Therm Sci. 2016; 20(2):763–769. [18] Al-Refai M. On weighted Atangana–Baleanu fractional operators. Adv Differ Equations. 2020; 2020(1). [19] Hattaf K. A new generalized definition of fractional derivative with non-singular kernel. Computation. 2020; 8(2):1–9. [20] Hristov J. On the Atangana – Baleanu derivative and its relation to the fading memory concept: The Diffusion Equation. :175–193. [21] Hristov J. Derivatives with non-singular kernels from the Caputo-Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models. 2018; 1:269–341. [22] Syam MI, Al-Refai M. Fractional differential equations with Atangana–Baleanu fractional derivative: Analysis and applications. Chaos, Solitons Fractals X. 2019; 2:3–7. [23] Tuan NH, Mohammadi H, Rezapour S. A mathematical model for COVID-19 transmission by using the Caputo fractional derivative. Chaos, Solitons and Fractals. 2020; 140. [24] Baleanu D, Mohammadi H, Rezapour S. A fractional differential equation model for the COVID-19 transmission by using the Caputo–Fabrizio derivative. Adv Differ Equations. 2020; 2020(1). | ||
آمار تعداد مشاهده مقاله: 44,356 تعداد دریافت فایل اصل مقاله: 713 |