
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,783 |
تعداد دریافت فایل اصل مقاله | 7,656,215 |
Homoclinic Orbits and Localized Solutions in Discrete Nonlinear Schrodinger Equation with Long-Range Interaction | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 27، دوره 13، شماره 1، خرداد 2022، صفحه 353-363 اصل مقاله (387.36 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.23619.2588 | ||
نویسندگان | ||
Allal Mehazzem* 1، 2؛ Mohamed Saleh Abdelouahab2؛ Kamel Haouam1 | ||
1Department of Mathematics and Informatics, Faculty of Exact Sciences, Natural and Life Sciences, El Arbi Tebessi University, Tebessa, Algeria. | ||
2Department of Mathematics and Informatic, Abdelhafidh Boussouf University Center of Mila, Mila, Algeria | ||
تاریخ دریافت: 30 خرداد 1400، تاریخ پذیرش: 21 شهریور 1400 | ||
چکیده | ||
In this paper, we use the homoclinic orbit approach without using small perturbations to prove the existence of soliton solutions of the discrete nonlinear Schrödinger equations with long-range interaction by employing the properties of the symmetries of reversible planar maps. Moreover, the long-range interaction by a potential proportional to $1/l^{1+\alpha} $ with fractional $\alpha < 1 $ and $l $ as natural number. | ||
کلیدواژهها | ||
Fractional equation؛ discrete Schrodinger equation؛ Long-Range Interaction؛ Homoclinic orbits؛ reversible planar maps | ||
مراجع | ||
[1] S. Aubry, Anti-integrability in dynamical and variational problems, Physica D: Nonlinear Phenom. 86.(1-2) (1995) 284–296. [2] D. Cai, A.R. Bishop and N. Grønbech-Jensen, Localized states in discrete nonlinear Schr¨odinger equations, Phys. Rev. Lett. 72(5) (1994) 591. [3] D. Cai, A. R Bishop, N. Grønbech-Jensen and M. Salerno, Electric-field-induced nonlinear Bloch oscillations and dynamical localization, Phys. Rev. Lett. 74(7) (1995) 1186. [4] O. Ciaurri, C. Lizama, L. Roncal and J.L. Varona, On a connection between the discrete fractional Laplacian and superdiffusion, Appl. Math. Lett. 49 (2015) 119–125. [5] O. Ciaurri, L. Roncal, P.R. Stinga, J.L. Torrea and J. L. Varonaa, Nonlocal discrete diffusion equations and the fractional discrete Laplacian, regularity and applications, Adv. Math. 330 (2018) 688–738. [6] R.L. Devaney, Homoclinic bifurcations and the area-conserving H´enon mapping, J. Diff. Equ. 51(2) (1984) 254–266. [7] H.R. Dullin and J.D. Meiss, Generalized H´enon maps: the cubic diffeomorphisms of the plane, Physica D: Nonlinear Phenom. 143(1-4) (2000) 262–289. [8] C.S. Goodrich, On positive solutions to nonlocal fractional and integer-order difference equations, Appl. Anal. Discrete Math. 5(1) (2011) 122–132. [9] D. Hennig, K.Ø. Rasmussen, H. Gabriel and A. Bulow, Solitonlike solutions of the generalized discrete nonlinear Schr¨odinger equation, Physical Review E 54.5 (1996), 5788. [10] M. Jenkinson and M.I. Weinstein, Discrete solitary waves in systems with nonlocal interactions and the Peierls–Nabarro barrier, Commun. Math. Phys. 351(1) (2017) 45–94. [11] J.S. W. Lamb and J.A.G. Roberts, Time-reversal symmetry in dynamical systems: a survey, Physica-Sec. D 112(1) (1998) 1–39. [12] R.S. MacKay, Discrete breathers: classical and quantum, Physica A: Stat. Mech. Appl. 288(1-4) (2000) 174–198. [13] M.I. Molina, The fractional discrete nonlinear Schr¨odinger equation, Phys. Lett. A 384(8) (2020) 126180. [14] A. Pankov and N. Zakharchenko, On some discrete variational problems, Acta Appl. Math. 65(1) (2001) 295–303. [15] W.X. Qin and X. Xiao, Homoclinic orbits and localized solutions in nonlinear Schr¨odingerr lattices, Nonlinear. 20(10) (2007) 2305. [16] V.E. Tarasov and G.M. Zaslavsky, Fractional dynamics of systems with long-range interaction, Commun. Nonlinear Sci. Numer. Simul. 11(8) (2006) 885–898. [17] M.I. Weinstein, Excitation thresholds for nonlinear localized modes on lattices, Nonlinear. 12(3) (1999) 673. [18] M. Xiang and B. Zhang, Homoclinic solutions for fractional discrete Laplacian equations, Nonlinear Anal. 198 (2020), 111886. | ||
آمار تعداد مشاهده مقاله: 15,868 تعداد دریافت فایل اصل مقاله: 542 |