
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,942 |
تعداد دریافت فایل اصل مقاله | 7,656,400 |
Comparison of Harder stability and Rus stability of Mann iteration procedure and their equivalence | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 31، دوره 13، شماره 1، خرداد 2022، صفحه 409-420 اصل مقاله (408.37 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.17495.1939 | ||
نویسندگان | ||
Gutti Venkata Ravindranadh Babu1؛ Gedala Satyanarayana* 2 | ||
1Department of Mathematics, Andhra University, Visakhapatnam-530 003, India | ||
2Department of Mathematics, Andhra University, Visakhapatnam-530 003, India. | ||
تاریخ دریافت: 05 فروردین 1398، تاریخ پذیرش: 23 فروردین 1400 | ||
چکیده | ||
In this paper, we study the stability of Mann iteration procedure in two directions, namely one due to Harder and the second one due to Rus with respect to a map $T:K\to K$ where $K$ is a nonempty closed convex subset of a normed linear space $X$ and there exist $\delta\in(0,1)$ and $L\geq 0$ such that $||Tx-Ty||\leq\delta||x-y||+L||x-Tx||$ for $x,y\in K$. Also, we show that the Mann iteration procedure is stable in the sense of Rus may not imply that it is stable in the sense of Harder for weak contraction maps. Further, we compare and study the equivalence of these two stabilities and provide examples to illustrate our results. | ||
کلیدواژهها | ||
Fixed point؛ Mann iteration procedure؛ stability in the sense of Harder؛ limit shadowing property؛ stability in the sense of Rus | ||
مراجع | ||
[1] G.V.R. Babu, M.L. Sandhya and M.V.R. Kameswari, A note on a fixed point theorem of Berinde on weak contractions, Carpathian J. Math. 24(1) (2008) 8–12. [2] V. Berinde, Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum 9(1) (2004) 43–53. [3] T. Eirola, O. Nevanlinna and S.Yu. Pilyugin, Limit Shadowing property, Numer Funct. Anal. Opt. 18 (1997) 75–92. [4] A.M. Harder and T.L. Hicks, Stability results for fixed point iteration procedures, Math. Japonica 33 (1988) 693–706. [5] L. Qihou, A convergence theorem of the sequence of Ishikawa iterates for quasi-contractive mappings, J. Math. Anal. Appl. 146 (1990) 301–305. [6] W.R. Mann, Mean value methods in iteration, Proc. of Amer. Math. Soc. 44 (1953) 506–510. [7] M.O. Osilike, Stability results for fixed point iteration procedure, J. Nigerian Math. Soc. 14 (1995) 17–29. [8] M. O. Osilike, A stable iteration proceedure for quasi-contractive maps, Indian J. pure appl. Math. 27(1) (1996) 25–34. [9] M. Pˇacurar, Iterative Methods for Fixed Point Approximations, Risoprint, Cluj-Napoca, 2009. [10] B.E. Rhoades, Fixed point theorems and stability results for fixed point iteration procedures, Indian J. Pure Appl. Math. 21(1) (1990) 1–9. [11] B.E. Rhoades, Fixed point theorems and stability results for fixed point iteration procedures II, Indian J. Pure Appl. Math. 24(11) (1993) 691–703. [12] I.A. Rus, An abstract point of view on iterative approximation of fixed points: Impact on the theory fixed Point equations, Fixed Point Theory 13(1) (2012) 179–192. [13] I. Timis, New stability results of Picard iteration for contractive type mappings, Fasc. Math. 56(1) (2016) 167–184. | ||
آمار تعداد مشاهده مقاله: 15,760 تعداد دریافت فایل اصل مقاله: 395 |