
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,783 |
تعداد دریافت فایل اصل مقاله | 7,656,218 |
Fixed point theorem for asymptotically nonexpansive mappings under a new iteration sequence in CAT(0) space | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 54، دوره 13، شماره 1، خرداد 2022، صفحه 685-691 اصل مقاله (371.06 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.5557 | ||
نویسندگان | ||
Ahmed Abdulkareem Hadi* 1؛ Sabah Hassan Malih2 | ||
1Mathematics Science, Ministry of Education, Directorate of Education Baghdad Al-Rusafa 1{st}, Iraq | ||
2Department of mathematics, College of Education for pure science (Ibn-ALHaitham), university of Baghdad, Baghdad, Iraq | ||
تاریخ دریافت: 11 مرداد 1400، تاریخ بازنگری: 24 شهریور 1400، تاریخ پذیرش: 30 شهریور 1400 | ||
چکیده | ||
This paper is to define a new iterative scheme under a special sequence of asymptotically nonexpansive mapping with a special sequence. We prove some convergence, existence in {CAT(0)} space. | ||
کلیدواژهها | ||
{CAT(0)} space؛ new iteration sequence؛ $mathrm{Delta}$-{convergent subsequence} | ||
مراجع | ||
[1] M.R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, vol. 319. Springer Science & Business Media, 2013. [2] F. Bruhat and J. Tits, Groupes r´eductifs sur un corps local, Publ. Math.Institut Hautes Etudes Sci. 41 (1972) 5–251. [3] S. Dhompongsa, W. A. Kirk and B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex Anal. 8 (2007). [4] S. Dhompongsa, W.A. Kirk and B. Sims, Fixed points of uniformly Lipschitzian mappings, Nonlinear Anal. Theory, Methods Appl. 65 (2006) 762–772. [5] S. Dhompongsa and B. Panyanak, On ∆ϵ convergence theorems in CAT (0) spaces, Comput. Math. Appl. 56 (2008) 2572–2579. [6] W.A. Kirk, Geodesic geometry and fixed point theory, In Seminar of mathematical analysis (Malaga/Seville), 2002/2003), 64 (2003) 195–225. [7] W.A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. Theory, Methods Appl. 68 (2008) 3689–3696. [8] T.C. Lim, Remarks on some fixed point theorems, Proc. Am. Math. Soc. 60 (1976) 179–182. [9] S.H. Malih, Common Fixed Point for a Pair of Asymptotically Nonexpansive and Multivalued Mapping Under Fibonacci Iteration Sequence in CAT (0) Space, J. Phys. Conf. Ser. 1879 (2021). [10] S.H. Malih and S.S. Abed, Approximating random fixed points under a new iterative sequence, J. Interdiscip. Math. 22 (2019) 1407–1414. [11] S.H. Malih, Fixed point theorems of modified Mann and Ishikawa iterations, J. Interdiscip. Math. 24 (2021) 1093–1097. [12] S.H. Malih, Stability and convergence theorems of pointwise asymptotically nonexpansive random operator in Banach space, Int. J. Nonlinear Anal. Appl. 12 (2021) 119–127. [13] S.H. Malih, Random fixed point for random Fibonacci Noor iteration scheme, J. Interdiscip. Math., 24 (2021) 775–779. [14] S.H. Malih, Random fixed point under contractive condition of integral type, J. Phys. Conf. Ser. 1897 (2021) 12035. [15] S.H. Malih, Random Fixed Point on Ishikawa Random Iteration Under Fibonacci Sequence, J. Phys. Conf. Ser. 1879 (2021) 32044. [16] S.H. Malih and S.S. Abed, Convergence and stability of some random iterative schemes, J. Phys.: Conf. Ser. 1963 (2021) 12112. [17] S.H. Malih and S.S. Abed, Convergence of random iterative scheme to a common random fixed points, J. Phys. Conf. Ser. 1963 (2021) 12113. [18] B. Nanjaras and B. Panyanak, Demiclosed principle for asymptotically nonexpansive mappings in CAT(0) spaces, Fixed Point Theory Appl. 2010 (2010) 268780. [19] Y. Niwongsa and B. Panyanak, Noor iterations for asymptotically nonexpansive mappings in CAT(0) spaces, Int. J. Math. Anal. 4 (2010) 645–656. [20] H. Zhou, R.P. Agarwal, Y.J. Cho and Y.S. Kim, Nonexpansive mappings and iterative methods in uniformly convex Banach spaces, Georg. Math. J. 9 (2002) 591–600. | ||
آمار تعداد مشاهده مقاله: 15,781 تعداد دریافت فایل اصل مقاله: 491 |