
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,940 |
تعداد دریافت فایل اصل مقاله | 7,656,398 |
Application of a generalization of Darbo's fixed point theorem via Mizogochi-Takahashi mappings on mixed fractional integral equations involving $(k, s)$-Riemann-Liouville and Erd\'{e}lyi-Kober fractional integrals | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 71، دوره 13، شماره 1، خرداد 2022، صفحه 859-869 اصل مقاله (444.89 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.23002.2451 | ||
نویسندگان | ||
Anupam Das1؛ Vahid Parvaneh* 2؛ Bhuban Chandra Deuri3؛ Zohreh Bagheri4 | ||
1Department of Mathematics, Cotton University, Panbazar, Guwahati-781001, Assam, India | ||
2Department of Mathematics, Gilan-E-Gharb Branch, Islamic Azad University, Gilan-E-Gharb, Iran | ||
3Department of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh-791112, Arunachal Pradesh, India | ||
4Department of Mathematics, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran | ||
تاریخ دریافت: 07 فروردین 1400، تاریخ بازنگری: 20 اردیبهشت 1400، تاریخ پذیرش: 08 تیر 1400 | ||
چکیده | ||
We have established the solvability of fractional integral equations with both $(k,s)$-Riemann-Liouville and Erd'{e}lyi-Kober fractional integrals using a new generalized version of the Darbo's theorem using Mizogochi-Takahashi mappings and justify the validity of our results with the help of suitable examples. | ||
کلیدواژهها | ||
Functional integral equations (FIE)؛ Measure of non-compactness (MNC)؛ Fixed point theorems (FPT) | ||
مراجع | ||
[1] M. Z. Sarikaya, Z. Dahmani, M.E. Kieis and F. Ahmad, (k, s)-Riemann-Liouville fractional integral and applications, Hacettepe J. Math. Stat. 45(1) (2016) 77–89. [2] R.P. Agarwal, Maria Meehan and D. O’Regan, Fixed Point Theory and Applications Cambridge University Press, 2001. [3] S. Banaei, M. Mursaleen and V. Parvaneh, Some fixed point theorems via measure of noncompactness with applications to differential equations, Comput. Appl. Math. 39 (2020) 139. [4] J. Bana´s and K. Goebel, Measure of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, Vol. 60, Marcel Dekker, New York, 1980. [5] G. Darbo, Punti uniti in trasformazioni a codominio non compatto (Italian), Rend. Sem. Mat. Univ. Padova 24 (1955) 84–92. [6] M. A. Darwish and K. Sadarangani, On Erd´elyi-Kober type quadratic integral equation with linear modification of the argument, Appl. Math. Comput. 238 (2014) 30–42. [7] A. Das, B. Hazarika, V. Parvaneh and M. Mursaleen, Solvability of generalized fractional order integral equations via measures of noncompactness, Math. Sci. 15 (2021) 241–251. https://doi.org/10.1007/s40096-020-00359-0. [8] B. Matani and J. R. Roshan, Multivariate generalized Meir-Keeler condensing operators and their applications to systems of integral equations, J. Fixed Point Theory Appl., (2020) 22:87. [9] J.R. Roshan, Existence of solutions for a class of system of functional integral equation via measure of noncompactness, J. Comput. Appl. Math. 313 (2017) 129–141. [10] E. Ameer, H. Aydi, M. Arshad, H. Alsamir and M.S. Noorani, Hybrid multivalued type contraction mappings in αK-complete partial b-metric spaces and applications, Symmetry 11(1) (2019) 86. [11] E. Ameer, H. Aydi, M. Arshad and M. De la Sen, Hybrid Ciri´c type graphic (Υ, Λ)-contraction mappings with applications to electric circuit and fractional differential equations, Symmetry 12(3) (2020) 467. [12] R. Garra, E. Orsingher and F. Polito, A note on Hadamard fractional differential equations with varying coefficients and their applications in probability, Math. 8(1) 2018 4. [13] F. Jarad, T. Abdeljawad and Z. Hammouch, On a class of ordinary differential equations in the frame of AtanganaBaleanu fractional derivative, Chaos, Solitons Fract. 117 (2018) 16–20. [14] K. Kuratowski, Sur les espaces complets, Fund. Math. 15 (1930) 301–309. [15] R. Mollapourasl and A. Ostadi, On solution of functional integral equation of fractional order, Appl. Math. Comput. 270 (2015) 631–643. [16] J. Bana´s and M. Krajewska, Existence of solutions for infinite systems of differential equations in spaces of tempered sequences, Electronic J. Diff. Equ. 60 (2017) 1–28. | ||
آمار تعداد مشاهده مقاله: 16,013 تعداد دریافت فایل اصل مقاله: 539 |