
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,935 |
تعداد دریافت فایل اصل مقاله | 7,656,390 |
Walking parameter estimation of human leg using extended Kalman filter | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، Special Issue، اسفند 2021، صفحه 1541-1552 اصل مقاله (867.6 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.5810 | ||
نویسندگان | ||
S Navaneethan* ؛ U Swetha | ||
Department of Instrumentation and Control systems Engineering, PSG College of Technology, Coimbatore, India. | ||
تاریخ دریافت: 15 مرداد 1400، تاریخ بازنگری: 25 شهریور 1400، تاریخ پذیرش: 17 آبان 1400 | ||
چکیده | ||
Human motion tracking is a significant problem in the rehabilitation phase of people with leg injuries. To monitor and analyze them in a reliable way under low cost, Knee and thigh angles of the human leg are estimated using sensors. The human leg is modeled as a two link revolute joint robot. Initially, switched linear models of the human leg are considered. Since linear models are considered, Kalman filtering algorithm is applied to obtain the values of the estimates. Results are obtained for Kalman filtering algorithm and it is observed that, estimates cannot be obtained on using Kalman filtering algorithm. On considering the non-linearity of the human leg, the nonlinear model is obtained. The parameters are estimated using the Extended Kalman filtering algorithm. The results are obtained and are reliable. Based on these values, the rate of recovery of the patient during rehabilitation phase can be assessed. Furthermore, this data can be sent to physicians over the Internet of Things. | ||
کلیدواژهها | ||
Switched linear model؛ Extended Kalman Filter | ||
مراجع | ||
[1] M.M. Aalim and A. AL-Saif, Modelling, simulation and control of 2-R robot, Glob. J. Res. Eng. 14 (2014) 100–104. [2] F. Auger, M. Hilairet, J.M. Guerrero, E. Monmasson, T. Orlowska-Kowalska and S. Katsura, Industrial applications of Kalman filter: A review, IEEE Transactions on Industrial Elect. 60 (2013) 5458–5471. [3] A. Babiarz, A. Czornik, J. Klamka, M. Niezabitowski and R. Zawiski, The mathematical model of the human arm as a switched linear system, Methods and Models in Automation and Robotics (MMAR), 19th International Conference, (2014) 508–513. [4] A. Babiarz, A. Czornik, M. Niezabitowski and R. Zawiski, Mathematical model of a human leg: The switched linear system approach, Int. Conf.on Pervasive and Embedded Comput. Commun. Syst. (2015) 1–8. [5] T. Bennett, R. Jafari and N. Gans, An extended Kalman filter to estimate human gait parameters and walking distance, Amer. Control Conf. (2013) 165–189. [6] M. Cardona, C.E.G. Cena, Biomechanical analysis of the lower limb: A full body musculoskeletal model for muscle-driven simulation, IEEE Access 7 (2019) 92709–92723. [7] Y. Chen, H. Li, Z. Qiu, T.D. Wang and K.R. Oldham, Improved extended Kalman filter estimation using threshold signal detection with an MEMS electrostatic microscanner, IEEE Trans. Indust. Elect. 67 (2019) 1328–1336. [8] W. Chung, H. Kim, Y. Yoo, C.-B. Moon and J. Park, The detection and following of human legs through inductive approaches for a mobile robot with a single laser range finder, IEEE Trans. Indust.l Elect. 59 (2011) 3156–3166. [9] H.T. Duong and Y. SooSuh, Walking parameters estimation based on a wrist- mounted inertial sensor for a walker user, IEEE Sensors J. 17 (2017) 2100–2108. [10] H. Geyer and H. Herr, A muscle reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities, IEEE Trans. Neural Syst. Rehabil. Eng. 18(3) (2010) 263–273. [11] Y. Hu and K. Mombaur, Analysis of human legs joints compliance in different walking scenarios with an optimal control approach, Int. Federation of Automatic Control, 49(14) (2016) 99–106. [12] J. Klamka, and M. Niezabitowski, Controllability of switched linear dynamical systems, Methods and Models in Automation and Robotics (MMAR), 18th Int. Conf. (2013) 464–467. [13] M.B. Shamsollahi, ECG denoising and compression using a modified extended Kalman filter structure, IEEE trans. Biom. Eng. 55 (2008) 2240–2248. [14] Y. Zhao, C. Xu, Y. Luo and Y. Wang, Design, modelling and simulation of the human lower extremity exoskeleton, Control and Decision Conf. (2008) 3335–3339. | ||
آمار تعداد مشاهده مقاله: 43,430 تعداد دریافت فایل اصل مقاله: 339 |