
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,909 |
تعداد دریافت فایل اصل مقاله | 7,656,367 |
A study on approximate and exact controllability of impulsive stochastic neutral integrodifferential evolution system in Hilbert spaces | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، Special Issue، اسفند 2021، صفحه 1731-1743 اصل مقاله (442.78 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.5861 | ||
نویسندگان | ||
R. Subalakshmi* ؛ B. Radhakrishnan | ||
Department of Mathematics, PSG College of Technology, Coimbatore 641004, TamilNadu, India | ||
تاریخ دریافت: 06 شهریور 1400، تاریخ پذیرش: 15 آبان 1400 | ||
چکیده | ||
In this paper, the authors establish the approximate and exact controllability of semilinear non-autonomous impulsive neutral stochastic evolution integrodifferential systems with variable delay in a real separable Hilbert space. The findings are determined by using the fixed point approach. Finally, an example is addressed in the proposed work. | ||
کلیدواژهها | ||
Impulsive neutral stochastic evolution equation؛ Fractional power operator؛ Approximate controllability؛ Exact controllability؛ Banach fixed point theorem | ||
مراجع | ||
[1] N.U. Ahmed and X. Ding, A semilinear Mckean-Vlasov stochastic evolution equation in Hilbert spaces, Stochastic Process Appl. 60 (1995) 65–85. [2] D.D. Bainov and P.S. Simenov, Systems with Impulse Effect, Ellis Horwood, Chichester,1989. [3] K. Balachandran, S. Karthikeyan and J.Y. Park, Controllability of stochastic systems with distributed delays in control, Int. J. Control 82 (2009) 1288–1296. [4] G. Ballinger, X. Liu, Boundness for impulsive delay differential equations and applications to population growth models, Nonlinear Anal. Theory Methods Appl. 53 (2003) 1041–1062. [5] Y.K. Chang, Controllability of impulsive functional differential systems with infinite delay in Banach spaces, Chaos Solitons & Fractals 33 (2007) 1601–1609. [6] R. Curtain, H.J. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory, New York: Springer, 1995. [7] J.P. Dauer and N.I. Mahmudov, Controllability of stochastic semilinear functional differential equations in Hilbert spaces, J. Math. Anal. Appl. 290 (2004) 373–394. [8] J.P. Dauer, N.I. Mahmudov and M.M. Matar, Approximate controllability of backward stochastic evolution equations in Hilbert spaces, J. Math. Anal. Appl. 323 (2006) 42–56.[9] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Uni. Press, Cambridge, 1992. [10] A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969. [11] T.E. Govindan, Stability of mild solutions of stochastic evolution equations with variable delay, Stochastic Anal. Appl. 21 (2003) 1059–1077. [12] E. Hernandez, M. Rabello and H.R. Henriquez, Existence of solutions for impulsive partialneutral functional differential equations, J. Math. Anal. Appl. 331 (2007) 1135–1158. [13] Z. He, X. He, Periodic boundary value problems for first order impulsive integrodifferential equations of mixed type, J. Math. Anal. Appl. 296 (2004) 8–20. [14] J. Klamka, Constrained controllability of semilinear systems with multiple delays in control, Bull. Polish Academy Sci. Technical Sci. 52 (2004) 25–30. [15] J. Klamka, Stochastic controllability of linear systems with delay in control, Bull. Polish Academy Sci. Technical Sci. 55 (2007) 55 23–29. [16] V. Lakshmikantham, D.D. Bainov and P.S. Simenov, Theory of Impulsive Differential Equations, World scientific, Singapore, 1989. [17] M.L. Li, M.S. Wang and F.Q. Zhang, Controllability of impulsive functional differential systems in Banach spaces, Chaos, Solitons & Fractals 29 (2006) 175–181. [18] N.I. Mahmudov, On controllability of linear stochastic systems in Hilbert spaces, J. Math. Anal. Appl. 259 (2001) 64–82. [19] N.I. Mahmudov, Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces, SIAM J. Control Optim. 42 (2003) 1604–1622. [20] N.I. Mahmudov, Controllability of stochastic semilinear functional differential equations in Hilbert spaces, J. Math. Anal. Appl. 290 (2004) 373–394. [21] A. Pazy, Semigroups of Linear Operators and Applications to Partial DifferentialEquations, Springer-Verlag, Berlin, 1983. [22] B. Radhakrishnan and P. Chandru, Boundary controllability of impulsive integrodifferential evolution systems with time-varying delays, J. Taibah Uni. Sci. 12 (2018) 520–531. [23] B. Radhakrishnan and T. Sathya, Controllability and periodicity results for neutral impulsive evolution system in Banach spaces, Dynamics of Continuous, Discrete Impulsive Syst. 26(4) (2019) 261–277. [24] B. Radhakrishnan and M. Tamilarasi, Existence of solutions for quasilinear random impulsive neutral differential evolution equation, Arab J. Math. Sci. 24(2) (2018) 235–246. [25] B. Radhakrishnan and M. Tamilarasi, Existence, uniqueness and stability results for fractional hybrid pantograph equation with random impulse, Dynamics Continuous, Discrete Impulsive Systems Series B: Appl. & Algorithms 28(3) (2021) 165–181. [26] B. Radhakrishnan, M. Tamilarasi and P. Anukokila, Existence, uniqueness and stability results for semilinear integrodifferential non-local evolution equations with random impulse, Filomat 32(19) (2018) 6615–6626. [27] R. Subalakshmi and K. Balachandran, Approximate controllability of neutral stochastic integrodifferential systems in Hilbert spaces, Elect. J. Diff. Equ. 162 (2008) 1–15. [28] R. Subalakshmi and K. Balachandran, Approximate controllability of nonlinear stochastic impulsive integrodifferential systems in Hilbert spaces, Chaos, Solitons & Fractals 42 (2009) 2035–2046. [29] H. Zhang, Z. Hang and G. Feng, Reliable dissipative control for stochastic impulsive systems, Automatica 44 (2008) 1004–1010. | ||
آمار تعداد مشاهده مقاله: 43,987 تعداد دریافت فایل اصل مقاله: 341 |