| تعداد نشریات | 21 |
| تعداد شمارهها | 663 |
| تعداد مقالات | 9,691 |
| تعداد مشاهده مقاله | 68,983,151 |
| تعداد دریافت فایل اصل مقاله | 48,478,599 |
Some properties of fuzzy soft $\mathfrak{n} -\widetilde{\mathcal{N}}$ quasi normal operators | ||
| International Journal of Nonlinear Analysis and Applications | ||
| مقاله 192، دوره 13، شماره 1، خرداد 2022، صفحه 2307-2314 اصل مقاله (391.77 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.5931 | ||
| نویسندگان | ||
| Jaafer Hmood Eidi* ؛ Salim Dawood Mohsen | ||
| Department of Mathematics, College of Education, Mustansiriyah University, Baghdad, Iraq | ||
| تاریخ دریافت: 16 مهر 1400، تاریخ بازنگری: 17 آبان 1400، تاریخ پذیرش: 01 آذر 1400 | ||
| چکیده | ||
| In this work, we invested a kind of fuzzy soft quasi-normal operator namely fuzzy soft $\mathfrak{(n-}\widetilde{\mathcal{N}})$-quasi-normal operator this modification of fuzzy soft bounded linear quasi-normal operator appear in recently many papers. Some properties and operation about this operator have been given, also more conditions given to get some theorems in this study. | ||
| کلیدواژهها | ||
| fuzzy soft bounded linear operator؛ Fuzzy soft Quasi normal operator؛ fuzzy soft $mathfrak{(n -}widetilde{mathcal{N}})$ quasi normal operator؛ fuzzy soft Hilbert space | ||
| مراجع | ||
|
[1] S. Bayramov and C. Gunduz, Soft locally compact spaces and soft Para compact spaces, J. Math. Sys. Sci. 3 (2013) 122–130. [2] T. Beaula and M.M. Priyanga: A new notion for fuzzy soft normed linear space, IJFMS Arch. 9(1) (2015) 81–90. [3] S. Das and S.K. Samanta, On soft inner product spaces, AFMI 6(1) (2013) 151–170. [4] N. Faried, M.S. Ali and H.H. Sakr, On fuzzy soft Hermition operators, AMSJ 9(1) (2020) 73–82. [5] N. Faried, M.S. Ali and H.H. Sakr, On fuzzy soft linear operators in fuzzy soft Hilbert spaces, Abstr. Appl. Anal. 2020 (2020). [6] N. Faried, M.S.S. Ali and H.H. Sakr, Fuzzy soft Hilbert spaces, JMCS 8(3) (2020). [7] A.Z. Khameneh, A. Kilicman and A.R. Salleh, Parameterized norm and parameterized fixed-point theorem by using fuzzy soft set theory, arXiv, 1309.4921 (2013). [8] P.K. Maji, R. Biswas and A.R. Roy, Fuzzy soft set, J. Fuzzy Math. 9(3) (2002) 677–692. [9] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (1999) 19–31. [10] S. Mukherjee and T. Bag, Some properties of Hilbert spaces, Int. J. Math. Sci. Comput. 1(2) (2011) 50–55. [11] T.J. Neog, D.K. Sut and G. C. Hazarika, Fuzzy soft topological spaces, Int. J. Latest Trend Math., 2(1) (2012) 54–67. [12] M.I. Yazar, C. G. Aras and S. Bayramov, Results on soft Hilbert spaces, TWMS J. App. Eng. Math. 9(1) (2019) 159–164. [13] M.I. Yazar, T. Bilgin, S. Bayramov and C. Gunduz, A new view on soft normed spaces, Int. Math. For. 9(24) (2014) 1149–1159. [14] L.A. Zadeh, Fuzzy sets, Inf. Control 8 (1965) 338–353. | ||
|
آمار تعداد مشاهده مقاله: 15,979 تعداد دریافت فایل اصل مقاله: 7,464 |
||