
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,802 |
تعداد دریافت فایل اصل مقاله | 7,656,333 |
Fuzzy Aboodh transform for higher-order derivatives | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، Special Issue، اسفند 2021، صفحه 1905-1911 اصل مقاله (351.33 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.5942 | ||
نویسندگان | ||
Samir Alshebly* 1؛ Ameera Alkiffai2؛ Athraa Kadhim2 | ||
1Department of Mathematics, Faculty of Education, University of Kufa, Najaf, Iraq | ||
2Department of Mathematics, Faculty of Education for Girls, University of Kufa, Najaf, Iraq | ||
تاریخ دریافت: 19 مهر 1400، تاریخ بازنگری: 25 آبان 1400، تاریخ پذیرش: 10 آذر 1400 | ||
چکیده | ||
The strongly generalized differentiability notion is used to study the fuzzy Aboodh transform formula on the fuzzy $ n^{th} $-order differential in this paper. It is also employed in an analytic technique for fuzzy fifth-order differential equations, and the related theorems and properties are demonstrated in detail. Solving a few instances demonstrates the process. | ||
کلیدواژهها | ||
Fuzzy fifth-order differential equation؛ Fuzzy $ n^{th} $-order differential equation؛ Fuzzy number؛ Fuzzy Aboodh transform؛ Strongly generalized differentiable | ||
مراجع | ||
[1] S. Abbasbandy and T. Allahviranloo, Numerical solution of fuzzy differential equation by Tailor method, J. Comput. Method Appl. Math. 2 (2002) 113–124. [2] S. Abbasbandy, T. Allahviranloo, O. Lopez-Pouso and J. Nieto, Numerical methods for fuzzy differential inclusions, J. Comput. Method Appl. Math. 48(10–11) (2004) 1633–1641. [3] A. Alkiffai, S. Alshibley and A. Albukhuttar, Fuzzy aboodh transform for 2rd and 3rd –Order fuzzy differential equations, Adv. Differ. Equ. (1) (2021). [4] T. Allahviranloo and B. Ahmadi, Fuzzy laplace transforms, Soft Comput. (2010) 235–243. [5] T. Allahviranloo, Difference methods for fuzzy partial differential equations, Comput. Methods Appl. Math. 2(3) (2002) 233–242. [6] S. Alshibley, A. Alkiffai and A. Albukhuttar, Solving a circuit system using fuzzy aboodh transform, Turk. J. Comput. Math. Educ. 12(12) (2021) 3317–3323. [7] M. Barkhord, N. Kiani and N. Mikaeilvand, Laplace transform formula on fuzzy nth-order derivative and its application in fuzzy ordinary differential equations, Soft Comput. 18 (2014) 2461–2469. [8] B. Bede, I. Rudas and A. Bencsik, First order linear fuzzy differential equations under generalized differentiability, Inf. Sci. 177 (2006) 1648–1662.[9] B. Bede and S.G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets Syst. 151 (2005) 581–599. [10] S.L. Chang and L. Zadeh, On fuzzy mapping and control, IEEE Trans. Syst. Man Cybern.: Syst. SMC-2(1) (1972) 30–34. [11] D. Dubios and H. Prade, Towards fuzzy differential calculus, Fuzzy Sets Syst. 8(3) (1982) 225–233. [12] M. Ghanbari, Numerical solution of fuzzy initial value problems under generalized differentiability by HPM, Int. J. Ind. Math. 1(1) (2009) 19–39. [13] R. Goetschel and W. Voxman, Elementery calculus, Fuzzy Sets Syst. 18 (1986) 31–43. [14] O. Kaleva, Fuzzy differential equations, Fuzzy Set Syst. 24 (1987) 301–317. [15] A. Kandel, Fuzzy dynamical systems and the nature of their solutions, Fuzzy Sets Syst. (1980) 93–122. [16] A. Kandel and W.J. Byatt, Fuzzy differential equations, Proc. Int. Conf. Cybernet. Soc. Tokyo. 1978, pp. 1213– 12160. [17] P. Kloeden, Remarks on Peano-like theorems for fuzzy differential equations, Fuzzy Sets Syst. 44 (1991) 161–164. [18] M. Ma, M. Friedman and A. Kandel, Numerical solution of fuzzy differential equations, Fuzzy Sets Syst. 105 (1999) 133–138. [19] H. Ouyang and Y. Wu, On fuzzy differential equations, Fuzzy Sets Syst. 32 (1989) 321–325. [20] M.L. Puri and D. Ralescu, Differential for fuzzy function, J. Math. Anal. Appl. 91(2) (1983) 552–558. [21] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets Syst. 24 (1987) 319–330. [22] S. Salahshour, Nth-order fuzzy differential equations under generalized differentiability, J. Fuzzy Set Val. Anal. 14 (2011). [23] L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Set Syst. 161 (2010) 1564–1584. [24] H.C. Wu, The fuzzy Riemann integral and its numerical integration, Fuzzy Set Syst. 110 (2000) 1–25. [25] H.C. Wu, The improper fuzzy Riemann integral and its numerical integration, Inform Sci. 111(109) (1999). | ||
آمار تعداد مشاهده مقاله: 44,000 تعداد دریافت فایل اصل مقاله: 349 |