
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,728 |
تعداد دریافت فایل اصل مقاله | 7,656,156 |
Solution of n-th order interval fuzzy differential IAL equations using the backstepping method | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، Special Issue، اسفند 2021، صفحه 1965-1985 اصل مقاله (532.21 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.5966 | ||
نویسندگان | ||
Muna S Abbas* 1؛ Fadhel S Fadhel2 | ||
1Department of Accounting, Al-Esraa University College, Baghdad, Iraq | ||
2Department of Mathematics and Computer Applications, College of Science, Al-Nahrain University, Baghdad, Iraq | ||
تاریخ دریافت: 13 مهر 1400، تاریخ بازنگری: 13 آبان 1400، تاریخ پذیرش: 10 آذر 1400 | ||
چکیده | ||
There are two key points in this work as the main objectives. The first is how to convert $ n^{th} $ order fuzzy differential equation into a first-order system of fuzzy differential equations using the notion of upper and lower bounds of the fuzzy solution to constitute the so-called interval fuzzy solution. The second is to solve the obtained system from the first step using a powerful method (the backstepping method) to provide an asymptotically stable solution by applying direct methods of stability (Lyapunov direct method). | ||
کلیدواژهها | ||
Backstepping method؛ Fuzzy differential equations؛ Uncertainty interval؛ Control problems؛ Lyapunov functions؛ Quadratic from | ||
مراجع | ||
[1] M.S. Abbas and F.S. Fadhel, Stabilizability and solvability of fuzzy differential equations using backstepping method, J. Phys. Conf. Ser. 1963(1) (2021). [2] S. Abbasbandy, T.A. Viranloo, O. Lopez-Pouso and J.J. Nieto, Numerical methods for fuzzy differential inclusions, Comput. Math. Appl. 48(10-11) (2004) 1633–1641. [3] S. Abbasbandy and T.A. Viranloo, Numerical solutions of fuzzy differential equations by Taylor method, Comput. Meth. Appl. Math. 2(2) (2002) 113–124. [4] T. Allahviranloo, S. Abbasbandy, N. Ahmady and E. Ahmady, Improved predictor–corrector method for solving fuzzy initial value problems, Inf. Sci. 179(7) (2009) 945–955. [5] T. Allahviranloo, E. Ahmady and N. Ahmady, Amethod for solving nth order fuzzy linear differential equations, Int. J. Comput Math. 84(6) (2009) 730–742. [6] R.H. Ali and K.I. Ibraheem, Solution of fuzzy initial value problems using homotopy analysis method and pad`e approximate, Open Access Library J. 7(10) (2020) 1–16. [7] T. Allahviranloo, N.A. Kiani and M. Barkhordari, Toward the existence and uniqueness of solutions of secondorder fuzzy differential equations, Inf. Sci. 179(8) (2009) 1207–1215. [8] D. Behera and S. Chakraverty, Solution of fuzzy system of linear equations with polynomial parametric form, Appl. Appl. Math. 7(2) (2012) 648–657. [9] J.J. Buckley and T. Feuring, Fuzzy initial value problem for Nth-order linear differential equations, Fuzzy Sets Syst. 121(2) (2001) 247–255. [10] S. Chakraverty and D. Behera, Fuzzy system of linear equations with crisp coefficients, J. Intel. Fuzzy Syst. 25(1) (2013) 201–207. [11] S. Chakraverty, N. Mahato, P. Karunakar and T.D. Rao, Advanced numerical and semi-analytical methods for differential equations, John Wiley & Sons. (2019). [12] D. Dubois and H. Prade, Operations on fuzzy numbers, Int.J. Syst. Sci. 9(6) (1978) 613–626. [13] F.S. Fadhel and S.F. Noaman, Stabilizability and solvability of delay differential equations using backstepping method, Int. J. Pure Appl. Math. 118(2) (2018) 335–349. [14] D.N. Georgiou, J.J. Nieto and R. Rodriguez-Lopez, Initial value problems for higher-order fuzzy differential equations, Nonlinear Anal. Theory, Meth. Appl. 63(4) (2005) 587–600. [15] X. Guo and D. Shang, Approximate solution of th-order fuzzy linear differential equations, Math. Probl. Engin. 2013 (2013). [16] I.K. Hanan, F.S. Fadhel and M.Z. Ahmad, Stability of fractional order parabolic partial differential equations using discretised backstepping method, Malaysian J. Fund. Appl. Sci. 13(4) (2017) 612–618. [17] R. Jafari and S. Razvarz, Solution of fuzzy differential equations using fuzzy Sumudu transforms, Math. Comput. Appl. 23(1) (2018). [18] A. Khastan, F. Bahrami and K. Ivaz, textitNew results on multiple solutions for th-order fuzzy differential equations under generalized differentiability, Bound. Value Probl. (2009) 1–13. [19] O. Kaleva, Fuzzy differential equations, Fuzzy Sets Syst. 24(3) (1987) 301–317. [20] M. Krstic and A. Smyshlyaev, Boundary control of PDEs: A course on backstepping designs, Society for Industrial and Applied Mathematics, (2008). [21] M. Krstic,Lyapunov stability of linear predictor feedback for time-varying input delay, IEEE Trans. Automatic Control 585(2) (2010) 554–559. [22] M.L. Puri and D.A. Ralescu, Differentials of fuzzy functions, J. Math. Anal. Appl. 91(2) (2011) 430–436. [23] H.A. Sabr, B.N. Abood and M.H. Suhhiem, Fuzzy homotopy analysis method for solving fuzzy riccati differential equation, J. Phys Conf Ser. 1963 (1) (2021). [24] S. Salahshour, Nth-order fuzzy differential equations under generalized differentiability, J. Fuzzy Set Valued Anal. 2011 (2011) 1–14.[25] S. Seikkala, On the fuzzy initial value problem. Fuzzy sets and systems, Fuzzy Sets Syst. 24(3) (1987) 319–330. [26] Sh. Sharma and A.J. Obaid, Mathematical modelling, analysis and design of fuzzy logic controller for the control of ventilation systems using MATLAB fuzzy logic toolbox, J. Interdiscip. Math. 23(4) (2020) 843–849. [27] S.C. Sheldon and L.A. Zadeh, On fuzzy mapping and control, IEEE Trans. Syst. Man. Cybernet. 2(1) (1972) 30–34. [28] R. Kargar, T. Allahviranloo, M. Rostami-Malkhalifeh and G.R. Jahanshaloo, A proposed method for solving fuzzy system of linear equations, Scientific World J. 2014 (2014) Article ID 782093. [29] J. Zhou and C. Wen, Adaptive Backstepping Control of Uncertain Systems: Nonsmooth Nonlinearities, Interactions or Time-Variations, Springer, 2008. | ||
آمار تعداد مشاهده مقاله: 43,771 تعداد دریافت فایل اصل مقاله: 297 |