
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,873 |
تعداد دریافت فایل اصل مقاله | 7,656,352 |
Existence and uniqueness of weak solution in weighted Sobolev spaces for a class of nonlinear degenerate elliptic problems with measure data | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 215، دوره 13، شماره 1، خرداد 2022، صفحه 2635-2653 اصل مقاله (400.09 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.23603.2564 | ||
نویسندگان | ||
Mohamed El Ouaarabi* ؛ Adil Abbassi؛ Chakir Allalou | ||
Laboratory LMACS, FST of Beni Mellal, BP 523, 23000, Sultan Moulay Slimane University, Morocco | ||
تاریخ دریافت: 15 خرداد 1400، تاریخ بازنگری: 02 شهریور 1400، تاریخ پذیرش: 08 آبان 1400 | ||
چکیده | ||
In this paper, we study the existence and uniqueness of weak solution to a Dirichlet boundary value problems for the following nonlinear degenerate elliptic problems \begin{equation*} -{\rm{div}}\Big[ \omega_{1}\mathcal{A}(x,\nabla u)+\nu_{2}\mathcal{B}(x,u,\nabla u)\Big]+ \nu_{1}\mathcal{C}(x,u)+ \omega_{2}\vert u\vert^{p-2}u=f-{\rm{div}}F, \end{equation*} where $1 < p < \infty$, $\omega_{1}$, $\nu_{2}$, $\nu_{1}$ and $\omega_{2}$ are $A_p$-weight functions, and $\mathcal{A}:\Omega\times \mathbb{R}^n\longrightarrow\mathbb{R}^n$, $\mathcal{B}:\Omega\times\mathbb{R}\times \mathbb{R}^n\longrightarrow\mathbb{R}^n$, $\mathcal{C}:\Omega\times\mathbb{R}\longrightarrow\mathbb{R}$ are Carat'eodory functions that satisfy some conditions and the right-hand side term $f-{\rm{div}}F$ belongs to $L^{p'}(\Omega,\omega_{2}^{1-p'})+\prod\limits_{j=1}^{n}L^{p'}(\Omega,\omega_{1}^{1-p'})$. We will use the Browder-Minty Theorem and the weighted Sobolev spaces theory to prove the existence and uniqueness of weak solution in the weighted Sobolev space $W^{1,p}_ 0(\Omega,\omega_1,\omega_{2})$. | ||
کلیدواژهها | ||
Dirichlet problem؛ nonlinear degenerate elliptic problems؛ Browder-Minty Theorem؛ weighted Sobolev spaces؛ weak solution | ||
مراجع | ||
[1] A. Abbassi, C. Allalou and A. Kassidi, Topological degree methods for a Neumann problem governed by nonlinear elliptic equation, Moroccan J. of Pure and Appl. Anal., 6(2) (2020) 231–242. [2] A. Abbassi, C. Allalou and A. Kassidi, Existence results for some nonlinear elliptic equations via topological degree methods, J Elliptic Parabol Equ., 7(1) (2021) 121–136. [3] A. Abbassi, C. Allalou and A. Kassidi, Existence of weak solutions for nonlinear p-elliptic problem by topological degree, Nonlinear Dyn. Syst. Theory., 20(3) (2020) 229–241. [4] F. Behboudi and A. Razani, Two weak solutions for a singular (p, q)−Laplacian problem, Filomat, 33(11) (2019) 3399–3407. [5] A. Bensoussan, L. Boccardo and F. Murat, On a non linear partial differential equation having natural growth terms and unbounded solution, Annales de l’Institut Henri Poincare (C) Non Linear Anal., 5(4) (1988) 347–364. [6] D. Bresch, J. Lemoine, F. Guillen-Gonzalez, A note on a degenerate elliptic equations with applications to lake and seas, Electron. J. Differ. Equations, 2004(42) (2004) 1–13. [7] F. Chiarenza, Regularity for Solutions of Quasilinear Elliptic Equations Under Minimal Assumptions, Potential Theory Degenerate Partial Differ. Operators. Springer, Dordrecht (1995) 325–334 [8] M. Chipot, Elliptic Equations: An Introductory Course, Birkh¨auser, Berlin, 2009. [9] M. Colombo, Flows of Non-Smooth Vector Fields and Degenerate Elliptic Equations: With Applications to the Vlasov-Poisson and Semigeostrophic Systems, Publications on the Scuola Normale Superiore Pisa, Pisa. 22 (2017). [10] P. Drabek, A. Kufner, V. Mustonen, Pseudo-monotonicity and degenerated or singular elliptic operators, Bull. [11] P. Drabek, A. Kufner and F. Nicolosi. Quasilinear elliptic equations with degenerations and singularities, Walter de Gruyter. 5(2011). [12] E. Fabes, D. S. Jerison and C. E. Kenig, The Wiener test for degenerate elliptic equations, Annales de l’institut Fourier. 32(3) (1982) 151–182. [13] E. Fabes, C. E. Kenig and R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Commun. Stat.- Theory Methods, 7(1) (1982) 77–116. [14] B. Franchi and R. Serapioni, Pointwise estimates for a class of strongly degenerate elliptic operators: a geometrical approach, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze. 14(4) (1987) 527–568. [15] S. Fucik, O. John and A. Kufner, Function Spaces, Noordhoff International Publishing, Leyden. Academia, Publishing House of the Czechoslovak Academy of Sciences, Prague, 1977. [16] J. Garcia-Cuerva and J.L. Rubio de Francia, Weighted norm inequalities and related topics, Elsevier, 2011. [17] S. Heidari and A. Razani, Infinitely many solutions for (p(x), q(x))−Laplacian-like systems, Commun. Korean Math. Soc., 36(1) (2021) 51—62. [18] J. Heinonen, T. Kilpelainen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Math, Monographs, Clarendon Press, Oxford, 1993. [19] A. Kufner, Weighted Sobolev spaces, John Wiley and Sons Incorporated 31 (1985). [20] A. Kufner and B. Opic, How to define reasonably weighted Sobolev spaces, Commentationes Mathematicae Universitatis Carolinae., 25(3) (1984) 537–554. [21] M. Makvand Chaharlang and A. Razani, Two weak solutions for some Kirchhoff-type problem with Neumann boundary condition, Georgian Math. J., (2020) 1–10. [22] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Am. Math. Soc., 165 (1972) 207–226. [23] B. Muckenhoupt, The equivalence of two conditions for weight functions, Studia Math., 49(1) (1974) 101–106. [24] M. E. Ouaarabi, A. Abbassi and C. Allalou, Existence result for a Dirichlet problem governed by nonlinear degenerate elliptic equation in weighted Sobolev spaces, J. Elliptic. Parabol. Equ., 7(1) (2021) 221–242. [25] M. E. Ouaarabi, C. Allalou and A. Abbassi, On the Dirichlet Problem for some Nonlinear Degenerated Elliptic Equations with Weight, 2021 7th International Conference on Optimization and Applications (ICOA), 2021, pp. 1–6. doi: 10.1109/ICOA51614.2021.9442620. [26] M. E. Ouaarabi, A. Abbassi and C. Allalou, Existence Result for a General Nonlinear Degenerate Elliptic Problems with Measure Datum in Weighted Sobolev Spaces, Int. J. Optim. Appl. , 1(2) (2021) 1–9. [27] F. Safari and A. Razani, Positive weak solutions of a generalized supercritical Neumann problem, Iranian Journal of Science and Technology, Trans. A: Sci.. 44(6) (2020) 1891–1898. [28] A. Torchinsky, Real-variable methods in harmonic analysis, Academic Press, 1986. [29] B.O.Turesson, Nonlinear potential theory and weighted Sobolev spaces, Springer Science and Business Media. 1736 (2000). [30] X. Xu, A local partial regularity theorem for weak solutions of degenerate elliptic equations and its application to the thermistor problem, Differ. Integral Equ. 12(1) (1999) 83–100. [31] E. Zeidler, Nonlinear Functional Analysis and its Applications, vol.I, Springer-Verlag, Berlin, 1990. [32] E. Zeidler, Nonlinear Functional Analysis and its Applications, vol.II/B, Springer-Verlag, New York, 1990. | ||
آمار تعداد مشاهده مقاله: 15,873 تعداد دریافت فایل اصل مقاله: 762 |