
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,725 |
تعداد دریافت فایل اصل مقاله | 7,656,155 |
Boundedness of a new kind of Toeplitz operator on $2\pi$-periodic holomorphic functions on the upper halfplane | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 217، دوره 13، شماره 1، خرداد 2022، صفحه 2665-2670 اصل مقاله (359.75 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.22314.2349 | ||
نویسندگان | ||
Mohammad Ali Ardalani* 1؛ Saeed Haftbaradaran2 | ||
1Department of Mathematics, Faculty of Science, University of Kurdistan, Sanandaj, Iran | ||
2Department of mathematics, Faculty of Science, University of Kurdistan, Sanandaj, Iran | ||
تاریخ دریافت: 16 دی 1399، تاریخ پذیرش: 01 اسفند 1399 | ||
چکیده | ||
In the present paper, We introduce a new kind of Toeplitz operators on the spaces of $2\pi$ periodic holomorphic functions on the upper halfplane equipped with an integral norm similar to the norm of $L^{p}$ spaces. We prove the boundedness of Toeplitz operators in the case of bounded symbols. Also, we state some open problems for unbounded symbols and other cases in which our spaces are not Hilbert spaces. | ||
کلیدواژهها | ||
Toeplitz operator؛ projection؛ $2\pi$ periodic holomorphic functions؛ upper halfplane | ||
مراجع | ||
[1] M.A. Ardalani, On the isomorphism classification of spaces 2π periodic holomorphic functions on the upper halfplane, J. Math. Anal. Appl. 459 (2018) 350–359. [2] O. Constantin and J. A. Pelaez, Boudndedness of the Bergman projection on Lp-spaces with expotential weights, Bull. Sci. Math. 139 (2015) 245–268. [3] M. Dostanic, Unboundedness of the Bergman projection on Lp spaces with expotential weights, Proc. Edinb. Math. Soc. 47 (2004) 111–117. [4] M. Englis, Toeplitz operators and weighted Bergman kernels, J. Funct. Anal. 255 (6) (2008) 1419–1457. [5] S. Grudsky, A. Karapetyants, N. Vasilevski, Toeplitz operators on the unit ball of CN with radial symbols, J. Oper. Theory 49 (2003) 325–346. [6] W. Lusky and J. Taskinen, Toeplitz operators on Bergman spaces and Hardy multipliers, Studia. Math. 204 (2011) 137–154. [7] K. Zhu, Operator Theory in Function Spaces. 2nd edition, Mathematical surves and monographs, Vol. 138, American Mathematical Society, Providence, RI, 2007. | ||
آمار تعداد مشاهده مقاله: 15,637 تعداد دریافت فایل اصل مقاله: 251 |