| International Journal of Nonlinear Analysis and Applications | ||
| Volume 12, Special Issue, January 0, Pages 2093-2104 PDF (511.5 K) | ||
| DOI: 10.22075/ijnaa.2021.6039 | ||
| Receive Date: 02 October 2022, Revise Date: 12 November 2022, Accept Date: 04 December 2022 | ||
| References | ||
|
[1] E. Akdeniz Duran and F. Akdeniz, Efficiency of the modified jackknifed Liu-type estimator, Statist. Papers 53(2) (2012) 265–280. [2] M.N. Akram, M. Amin and M. Amanullah, Two-parameter estimator for the inverse Gaussian regression model, Commun. Statist. Simul. Comput. 2020 (2020) 1–19. [3] A. Alkhateeb and Z. Algamal, Jackknifed liu-type estimator in poisson regression model, J. Iran. Statist. Soc. 19(1) (2020) 21–37. [4] Z.Y. Algamal, Developing a ridge estimator for the gamma regression model, J. Chemometrics 32(10) (2018). [5] Z.Y. Algamal, A new method for choosing the biasing parameter in ridge estimator for generalized linear model, Chemometrics Intell. Lab. Syst. 183 (2018) 96–101. [6] Z.Y. Algamal, Performance of ridge estimator in inverse Gaussian regression model, Commun. Statist. Theory Methods 48(15) (2018) 3836–3849. [7] Z.Y. Algamal, Shrinkage estimators for gamma regression model, Electron. J. Appl. Statist. Anal. 11(1) (2018) 253–268. [8] Z.Y. Algamal, Shrinkage parameter selection via modified cross-validation approach for ridge regression model, Commun. Statist. Simul. Comput. 49(7) (2018) 1922–1930. [9] Z.Y. Algamal and M.R. Abonazel, Developing a Liu-type estimator in beta regression model, Concur. Comput. Pract. Exper. 2021 (2021). [10] Z.Y. Algamal, Performance of ridge estimator in inverse Gaussian regression model, Commun. Statist. Theory Methods 48(15) (2018) 3836–3849. [11] Z.Y. Algamal and M.M. Alanaz, Proposed methods in estimating the ridge regression parameter in Poisson regression model, Electron. J. Appl. Statist. Anal. 11(2) (2018) 506–15. [12] Z.Y. Algamal and Y. Asar, Liu-type estimator for the gamma regression model, Commun. Statist. Simul. Comput. 49(8) (2018) 2035–2048. [13] Z. Algamal, Shrinkage estimators for gamma regression model, Electron. J. Appl. Statist. Anal. 11(1) (2018) 253–268. [14] Z. Algamal, Generalized ridge estimator shrinkage estimation based on particle swarm optimization algorithm, Iraqi J. Statist. Sci. 17(32) (2020) 37–52. [15] Y. Al-Taweel, Z. Algamal and N. Sciences, Some almost unbiased ridge regression estimators for the zero-inflated negative binomial regression model, Period. Engin. Natural Sci. 8(1) (2020) 248–255. [16] J. Correa-Basurto, C. Flores-Sandoval, J. Mar´ın-Cruz, A. Rojo-Dom´ınguez, L.M. Espinoza-Fonseca and J.G.J. Trujillo-Ferrara, Docking and quantum mechanic studies on cholinesterases and their inhibitors, Eur. J. Medicinal Chem. 42(1) (2007) 10–19. [17] R. Farebrother, Further results on the mean square error of ridge regression, J. Royal Statist. Soc. Ser. B 38(3) (1976) 248–250. [18] M.H. Gruber, The efficiency of jack-knifed and usual ridge type estimators: A comparison, Statist. Probab. Lett. 11(1) (1991) 49–51. [19] D.V. Hinkley, Jackknifing in unbalanced situations, Technometrics 19(3) (1977) 285–292. [20] A.E. Hoerl and R.W. Kennard, Ridge regression: Biased estimation for nonorthogonal problems, Technometrics 12(1) (1970) 55–67. [21] A.E. Hoerl, R.W. Kannard and K.F. Baldwin, Ridge regression: Some simulations, Comm. Statist. Theory Methods 4(2) (1975) 105–123. [22] B.M.G. Kibria, Performance of some new ridge regression estimators, Commun. Statist. Simul. Comput. 32(2) (2003) 419–435. [23] B.M.G. Kibria and A.F. Lukman, A new ridge-type estimator for the linear regression model: simulations and applications, Scientifica 2020 (2020). [24] G. Kibria, K. M˚ansson and G. Shukur, Performance of some logistic ridge regression estimators, Comput. Econ. 40(4) (2012) 401–414. [25] M. Khurana, Y.P. Chaubey and S. Chandra, Jackknifing the ridge regression estimator: A revisit, Comm. Statist. Theory Methods 43(24) (2014) 5249–5262. [26] F. Kurto˘glu and M.R. Ozkale, ¨ Liu estimation in generalized linear models: application on gamma distributed response variable, Statist. Papers 57(4) (2016) 911–928.[27] K. Liu, A new class of biased estimate in linear regression, Comm. Statist. Theory Methods 22 (1993) 393–402. [28] G. Liu and S. Piantadosi, Ridge estimation in generalized linear models and proportional hazards regressions, Comm. Statist. Theory Methods. 46(23) (2016) 11466–11479. [29] A.F. Lukman, Z.Y. Algamal, B.M.G. Kibria and K. Ayinde, The KL estimator for the inverse Gaussian regression model, Concurr. Comput. Pract. Exper. 33(13) (2021). [30] A.F. Lukman, I. Dawoud, B.M.G. Kibria, Z.Y. Algamal and B. Aladeitan, A new ridge-type estimator for the gamma regression model, Scientifica 2021 (2021). [31] M.J. Mackinnon and M.L. Puterman, Collinearity in generalized linear models, Commun. Statist. Theory Methods. 18(9) (1989) 3463–3472. [32] K. M˚ansson and G. Shukur, A Poisson ridge regression estimator, Economic Modell. 28(4) (2011) 1475–1481. [33] P. McCullagh, J.A. Nelder and P. McCullagh, Generalized Linear Models, 2nd ed. New York: Chapman and Hall London, 1989. [34] H.S. Mohammed and Z.Y. Algamal, Shrinkage estimators for semiparametric regression model, J. Phys. Conf. Ser. 1897(1) (2021). [35] F. Noeel and Z.Y. Algamal, Almost unbiased ridge estimator in the count data regression models, Electron. J. Appl. Statist. Anal. 14(1) (2021) 44–57. [36] H. Nyquist, Applications of the jackknife procedure in ridge regression, Comput. Statist. Data Anal. 6(2) (1988) 177–183. [37] H. Nyquist, Restricted estimation of generalized linear models, J. Royal Statist. Soc. Ser. C 40(1) (1991) 133–141. [38] N.K. Rashad and Z.Y. Algamal, A new ridge estimator for the poisson regression model, Iran. J. Sci. Technol. Trans. A: Sci. 43(6) (2019) 2921–2928. [39] N.K. Rashad, N.M. Hammood and Z.Y. Algamal, Generalized ridge estimator in negative binomial regression model, J. Phys. Conf. Ser. 1897(1) (2021). [40] B. Segerstedt, On ordinary ridge regression in generalized linear models, Commun. Statist. Theory Methods. 21(8) (1992) 2227–2246. [41] M.R. Ozkale and E. Arıcan, ¨ A first-order approximated jackknifed ridge estimator in binary logistic regression, Comput. Statist. 34(2) (2018) 683–712. [42] R. Shamany, N.N. Alobaidi and Z.Y. Algamal, A new two-parameter estimator for the inverse Gaussian regression model with application in chemometrics, Electron. J. Appl. Statist. Anal. 12(2) (2019) 453–464. [43] B. Singh, Y. Chaubey and T. Dwivedi, An almost unbiased ridge estimator, Indian J. Statist. Ser. B. 13 (1986) 342–346. [44] S. T¨urkan and G. Ozel, ¨ A new modified Jackknifed estimator for the Poisson regression model, J. Appl. Statist. 43(10) (2015) 1892–1905. [45] N. Yıldız, On the performance of the Jackknifed Liu-type estimator in linear regression model, Commun. Statist. Theory Methods 47(9) (2018) 2278–2290. | ||
|
Statistics Article View: 44,334 PDF Download: 50,149 |
||