
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,757 |
تعداد دریافت فایل اصل مقاله | 7,656,168 |
Existence and uniqueness results to a fractional q-difference coupled system with integral boundary conditions via topological degree theory | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 13، شماره 1، خرداد 2022، صفحه 3197-3211 اصل مقاله (475.97 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.21951.2306 | ||
نویسندگان | ||
Abdellatif Boutiara1؛ Maamar Benbachir* 2 | ||
1Laboratory of Mathematics And Applied Sciences, University of Ghardaia, 47000, Algeria | ||
2Faculty of Sciences, Saad Dahlab University, Blida 1, Algeria | ||
تاریخ دریافت: 07 آذر 1399، تاریخ بازنگری: 15 بهمن 1399، تاریخ پذیرش: 14 اسفند 1399 | ||
چکیده | ||
This paper aims to highlight the existence and uniqueness results for a coupled system of nonlinear fractional $q$-ifference subject to nonlinear more general four-point boundary conditions are treated. Our analysis relies on two approaches, the topological degree for condensing maps via a priori estimate method and the Banach contraction principle fixed point theorem. Finally, Two examples illustrating the effectiveness of the theoretical results are presented. | ||
کلیدواژهها | ||
fractional differential equations system؛ fractional $q$-derivative؛ topological degree theory؛ condensing maps؛ existence and uniqueness | ||
مراجع | ||
[1] S. Abbas, M. Benchohra, B. Samet and Y. Zhou, Coupled implicit Caputo fractional q-difference systems, Adv. Difference Equ. 2019 (2019) 527. [2] C.R. Adams, On the linear ordinary q-difference equation, Ann. Math. 30 (1928) 195–205. [3] R.P. Agarwal, Certain fractional q-integrals and q-derivatives, Proc. Camb. Philos. Soc. 66 (1969) 365–370. [4] R.P. Agarwal and D. O’Regan, Topological degree theory and its applications, Tylor and Francis, 2006. [5] G. Adomian and G.E. Adomian, Cellular systems and ageing models, Comput. Math. Appl. 11 (1985) 283–291. [6] B. Ahmad, A. Alsaedi and A. Assolami, Caputo type fractional differential equations with nonlocal RiemannLiouville integral boundary conditions, J. Appl. Math. Comput. 41 (2013) 339–350. [7] B. Ahmad, S.K. Ntouyas and I.K. Purnaras, Existence results for nonlocal boundary value problems of nonlinear fractional q–difference equations, Adv. Differnce Equ. 2012 (2012) 140. [8] A. Ali, M. Sarwar, M. B. Zada and K. Shah, Degree theory and existence of positive solutions to coupled system involving proportional delay with fractional integral boundary conditions, Math. Methods Appl. Sci. (2020). DOI:10.1002/mma.6311. [9] W.A. Al-Salam, Some fractional q-integrals and q-derivatives, Proc. Edinb. Math. Soc. 15 (1969) 135–140. [10] M.H. Annaby and Z.S. Mansour, q–Fractional Calculus and Equations, Lecture Notes in Mathematics, vol. 2056, Springer, Heidelberg, 2012. [11] A. Ali, B. Samet, K. Shah and R.A. Khan, Existence and stability of solution to a toppled systems of differential equations of non-integer order, Bound. Value Prob. 2017(1) (2017) 1–13. [12] N. Ali, K. Shah, D. Baleanu, M. Arif and R.A. Khan, Study of a class of arbitrary order differential equations by a coincidence degree method, Bound. Value Probl. 2017(1) (2017) 1–14. [13] P.W. Bates, On some nonlocal evolution equations arising in materials science, Nonlinear Dyn. Evol. Equ. Fields Inst. Commun. 48 (2006) 13–52. [14] M. Baca, P. Jeyanthi, N. T. Muthuraja, P. N. Selvagopal and A. Semanicova-Fenovcıkova, Ladders and fan graphs are cycle-antimagic, Hacettepe J. Math. Statist. 2020 (2020) 1–14. [15] Z. Baitiche, C. Derbazi and M. Benchohra, ψ-Caputo fractional differential equations with multi-point boundary conditions by topological degree theory, Results Nonlinear Anal. 3(4) (2020) 166–178. [16] A. Boutiara, K. Guerbati and M. Benbachir, Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces, AIMS Math. 5(1) (2020) 259–272. [17] A. Boutiara, M. Benbachir, K. Guerbati, Measure Of Noncompactness for Nonlinear Hilfer Fractional Differential Equation in Banach Spaces, Ikonion Journal of Mathematics, 1(2)(2019). [18] A. Boutiara, M. Benbachir and K. Guerbati, Caputo type fractional differential equation with nonlocal Erd´elyiKober type integral boundary conditions in Banach spaces, Surv. Math. Appl. 15 (2020) 399–418. [19] R.D. Carmichael, The general theory of linear q–difference equations, Am. J. Math. 34 (1912) 147–168. [20] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, Germany, 1985. [21] N.R. Deepak, T. Ray and R.R. Boyce, Evolutionary algorithm shape optimization of a hypersonic flight experiment nose cone, J. Spacecraft Rockets 45(3) (2008) 428–437. [22] M. El-Shahed and H.A. Hassan, Positive solutions of q-difference equation, Proc. Am. Math. Soc. 138 (2010) 1733–1738. [23] T. Ernst, A Comprehensive Treatment of q-Calculus, Birkh¨auser, Basel, 2012. [24] S. Etemad, S.K. Ntouyas and B. Ahmad, Existence theory for a fractional q–integro-difference equation with q–integral boundary conditions of different orders, Math. 7 (2019) Article ID 659. [25] RAC. Ferreira, Nontrivial solutions for fractional q-difference boundary value problems, Electron. J. Qual. Theory Differ. Equ. 2010 (2010) 70. [26] S. Harikrishnan, K. Shah, D. Baleanu and K. Kanagarajan, Note on the solution of random differential equations via ψ-Hilfer fractional derivative, Adv Differ Equ 2018, 224 (2018). [27] F. Isaia, On a nonlinear integral equation without compactness, Acta Math. Univ. Comenian. 75 (2006) 233–240. [28] F.H. Jackson, q-difference equations, Am. J. Math. 32 (1910) 305–314. [29] V. Kac and P. Cheung, Quantum Calculus, Springer, New York, 2002. [30] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier Science, 2006. [31] K.S. Miller and B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993. [32] K.B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw. 41 (2010) 9–12. [33] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1993. [34] P.M. Rajkovic, S.D. Marinkovic and M.S. Stankovic, Fractional integrals and derivatives in q–calculus, Appl. Anal. Discrete Math. 1 (2007) 311–323. [35] P.M. Rajkovic, S.D. Marinkovic and M.S. Stankovic, On q-analogues of Caputo derivative and Mittag-Leffler function, Fract. Calc. Appl. Anal. 10 (2007) 359–373. [36] K. Shah, A. Ali and R. A. Khan, Degree theory and existence of positive solutions to coupled systems of multi-point boundary value problems, Bound. Value Probl. 2016 (2016) 43. [37] K. Shah and R. A. Khan, Existence and uniqueness results to a coupled system of fractional order boundary value problems by topological degree theory, Numer. Funct. Anal. Optim. 37 (2016) 887–899. [38] K. Shah and W. Hussain, Investigating a class of nonlinear fractional differential equations and its Hyers-Ulam stability by means of topological degree theory, Numer. Funct. Anal. Optim. 40 (2019) 1355–1372. [39] K. Shah and M. Akram, Numerical treatment of non-integer order partial differential equations by omitting discretization of data, Comp. Appl. Math. 37 (2018) 6700—6718. [40] K. Shah and W. Hussain, Investigating a class of nonlinear fractional differential equations and Its Hyers-Ulam stability by means of topological degree theory, Numer. Funct. Anal. Optim. 40(12) (2019) 1355–1372. [41] M. Sher, K. Shah, M. Feˇckan and R.A. Khan, Qualitative analysis of multi-terms fractional order delay differential equations via the topological degree theory, Math. 8(2) (2020) 218. [42] M. Sher, K. Shah, J. Rassias, On qualitative theory of fractional order delay evolution equation via the prior estimate method. Mathematical Methods in the Applied Sciences, 43(10)(2020), 6464-6475. [43] M. Shoaib, K. Shah and R. Ali Khan, Existence and uniqueness of solutions for coupled system of fractional differential equation by means of topological degree method, J. Nonlinear Anal. Appl. 2018 (2018) 124–135. [44] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg & Higher Education Press, Beijing, (2010). [45] J. Wang, Y. Zhou and W. Wei, Study in fractional differential equations by means of topological degree methods, Numer. Funct. Anal. Optim. 33 (2012) 216–238. [46] M. B. Zada, K. Shah and R. A. Khan, Existence theory to a coupled system of higher order fractional hybrid differential equations by topological degree theory, Int. J. Appl. Comput. Math. 4 (2018) 102. | ||
آمار تعداد مشاهده مقاله: 15,708 تعداد دریافت فایل اصل مقاله: 593 |