
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,917 |
تعداد دریافت فایل اصل مقاله | 7,656,369 |
Ditzain-Totik modulus of smoothness for the fractional derivative of functions in $L_p$ space of the partial neural network | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 13، شماره 1، خرداد 2022، صفحه 3305-3317 اصل مقاله (419.61 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.6083 | ||
نویسندگان | ||
Amenah Hassan Ibrahim* 1؛ Eman Samir Bhaya2؛ Eman Ali Hessen1 | ||
1Department of Mathematics, Collage of Sciences, AL-Mustansiriyah University, Baghdad, Iraq | ||
2Department of Mathematics, Collage of Education for Pure Sciences, University of Babylon, Iraq | ||
تاریخ دریافت: 21 خرداد 1400، تاریخ بازنگری: 17 شهریور 1400، تاریخ پذیرش: 27 مهر 1400 | ||
چکیده | ||
Some scientists studied the weighted approximation of the partial neural network, but in this paper, we studied the weighted Ditzain-Totik modulus of smoothness for the fractional derivative of functions in $L_p$ of the partial neural network and this approximation of the real-valued functions over a compressed period by the tangent sigmoid and quasi-interpolation operators. These approximations measurable left and right partial Caputo models of the committed function. Approximations are bitmap with respect to the standard base. Feed-forward neural networks with a single hidden layer. Our higher-order fractal approximation results in better convergence than normal approximation with some applications. All proved results are in $L_p[X]$ spaces, where $0{<}p{<}1$ | ||
کلیدواژهها | ||
approximation؛ Ditzain-Totik modulus؛ higher-order fractal approximation؛ partial Caputo models؛ partial neural network؛ Sobolev space | ||
مراجع | ||
[1] G.A. Anastassiou, Univariate sigmoidal neural network approximation, J. Comput. Anal. Appl. 14(10 (2012). [2] G.A. Anastassiou, Quantitative Approximations, Chapman&Hall, CRC, Boca Raton, New York, 2001. [3] G.A. Anastassiou, Fractional representation formulae and right fractional inequalities, Math. Comput. Model. 54 (11–12)(2011) 3098–3115. [4] G.A. Anastassiou, Intelligent Systems: Approximation by Artificial Neural Networks, Intelligent Systems Reference Library, vol. 19, Springer, Heidelberg, 2011. [5] G.A. Anastassiou, Multivariate hyperbolic tangent neural network approximation, Comput. Math. 61 (2011) 809–821. [6] K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Springer-Verlag, Berlin, Heidelberg, 2010. | ||
آمار تعداد مشاهده مقاله: 15,779 تعداد دریافت فایل اصل مقاله: 299 |