
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,747 |
تعداد دریافت فایل اصل مقاله | 7,656,162 |
The dynamics of a modified Holling-Tanner prey-predator model with wind effect | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، Special Issue، اسفند 2021، صفحه 2203-2210 اصل مقاله (464.96 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.6093 | ||
نویسندگان | ||
Shireen Jawad* 1؛ Dina Sultan1؛ Matthias Winter2 | ||
1Department of Mathematics, College of Science, University of Baghdad, Iraq | ||
2Department of Mathematics, Brunel University London, Uxbridge, United Kingdom | ||
تاریخ دریافت: 15 مهر 1400، تاریخ بازنگری: 01 آذر 1400، تاریخ پذیرش: 18 آذر 1400 | ||
چکیده | ||
Wind flow is one of the biosphere components that could change the amount of predation. This paper suggests and analyses a prey-predator model including wind in the predation task. The Holling-Tanner functional response has been considered to illustrate the global dynamics of the proposed model, considering the change in wind intensity. The persistence conditions are provided to reveal a threshold that will allow the coexistence of all species. Numerical simulations are provided to back up the theoretical analysis. The system’s coexistence can be achieved in abundance as long as the wind flow increases. | ||
کلیدواژهها | ||
dynamic؛ Holling-Tanner functional؛ Wind flow | ||
مراجع | ||
[1] C. Arancibia-Ibarra, The basins of attraction in a modified May–Holling–Tanner predator–prey model with Allee affect, Nonlinear Anal. 185 (2019) 15–28. [2] P. Feng and Y. Kang, Dynamics of a modified leslie–gower model with double allee effects, Nonlinear Dyn. 80(1) (2015) 1051–1062. [3] H.I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker Incorporated, 1980. [4] T.C. Gard and T.G. Hallam, Persistence in food webs—I Lotka-Volterra food chains, Bull. Math. Biol. 41(6) (1979) 877–891. [5] C.S. Holling, The functional response of invertebrate predators to prey density, Mem. Entomol. Soc. 98(S48) (1966) 5–86. [6] S. Jawad, Stability Analysis of Prey-Predator Models with a Reserved Zone and Stage Structure, The University of Baghdad, College of Science, Department of Mathematics, 2009. [7] S. Jawad, Modelling, Dynamics and Analysis of Multi-Species Systems with Prey Refuge, Doctoral Dissertation, Brunel University London, 2018.[8] E. Klimczuk, L. Halupka, B. Czy˙z, M. Borowiec, J.J. Nowakowski and H. Sztwiertnia, Factors driving variation in biparental incubation behaviour in the reed warbler Acrocephalus scirpaceus, Ardea. 103(1) (2015) 51–59. [9] P.H. Leslie, Some further notes on the use of matrices in population mathematics, Biometrika 35(3/4) (1948) 213–245. [10] A.J. Lotka, Elements of physical biology, Sci. Prog. Twent. 21(82) (1926) 341–343. [11] T.R. McVicar et al., Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation, J. Hydrol. 416 (2012) 182–205. [12] R.K. Naji and S.R. Jawad, The dynamics of prey-predator model with a reserved zone, World J. Model. Simul. 12(3) (2016) 175–188. [13] M. M. Nomdedeu, C. Willen, A. Schieffer and H. Arndt, Temperature-dependent ranges of coexistence in a model of a two-prey-one-predator microbial food web, Mar. Biol. 159(11) (2012) 2423–2430. [14] J. Roy, D. Barman and S. Alam, Role of fear in a predator-prey system with ratio-dependent functional response in deterministic and stochastic environment, Biosyst. 197 (2020). [15] R.N. Shalan, S.R. Jawad and A.H. Lafta, Stability of the discrete stage–structure prey–predator model, J. Southwest Jiaotong Univ. 55(1) (2020). | ||
آمار تعداد مشاهده مقاله: 43,950 تعداد دریافت فایل اصل مقاله: 473 |