
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,968 |
تعداد دریافت فایل اصل مقاله | 7,656,405 |
Change of measure in fractional stochastic differential equation | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 13، شماره 1، خرداد 2022، صفحه 3475-3478 اصل مقاله (300.52 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.6110 | ||
نویسندگان | ||
M.F. Al-Saadony1؛ Bahr Kadhim Mohammed* 1؛ Hameedah Naeem Melik2 | ||
1Universirty of Al-Qadisiyah, Iraq | ||
2{Universirty of Al-Qadisiyah, Iraq | ||
تاریخ دریافت: 19 شهریور 1400، تاریخ بازنگری: 05 آبان 1400، تاریخ پذیرش: 22 آبان 1400 | ||
چکیده | ||
Change of measure is a very well known common criterion in both the probability rules and applications. The change of measure is a transformation from actual measure to equivalent measure. We will employ the change of measure in Fractional Stochastic Differential Equations (FSDE), which is a general form of Stochastic Differential Equation (SDE). We will implement our method to some important examples, like, Fractional Brownian Motion (FBM) and Fractional Levy process (FL). | ||
کلیدواژهها | ||
Change of measure؛ Stochastic differential equations؛ Fractional stochastic differential equations؛ Fractional Brownian motion؛ Fractional Levy process | ||
مراجع | ||
[1] M.F. Al-Saadony and W.J. Al-Obaidi, Estimation the vasicek interest rate model driven by fractional L´evy processes with application, J. Phys. Conf. Ser. 1897(1) (2021) 012017. [2] D. Applebaum, Le’vy Processes and Stochastic Calculus, Second Edition, Cambridge University Press, 2009. [3] O.E. Barndorff-Nielsen and A. Shiryrov, Change of Time and Change of Measure, Volume 15 of Advanced Series on Statistical Science and Applied Probability, (Second ed.) World Scientific Publishing, 2015. [4] F. Biagini, Y. Hu, B. Øksendal and T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications, Springer, London, 2006. [5] P.J.E. Hunt, Financial Derivatives in Theory and Practice, Wiley Series in Probability and Statistics, Revised Edition, Wiley Publishing, 2005. [6] S.M. Iacus, Option Pricing and Estimation of Financial Models with R, (First ed.), John Wiley & Sone Italy, 2011. [7] S.M. Iacus, Simulation and Inference for Stochastic Differential Equations with R Examples, (First ed.), Springer Italy, 2008. [8] F.C. Klebaner, Introduction to Stochastic Calcites with Applications, (Third ed.), Imperial College Press, Australia, 2012. [9] T. Marquardi and C. Bender. Stochastic calculus for convoluted Le’vy process, Bernoulli 14(2) (2018) 499–518. [10] T. Marquardi, Fractional Le’vy process with an application to long moniery moving average processes, Bernardli 12(6) (2006) 1099–1126. [11] T. Mikosch, Elementary Stochastic Calcites with Finance in View. Volume 6 of Advanced Series on Statistical Science and Applied Probability, World Scientific Publishing, 1998. [12] T. Mikosch, Elementary Stochastic Calculus, (5th ed.), World Scientific Publishing, 2004. [13] Y. Miyahara, Option Pricing in Incomplete Markets: Modeling Based on Geometric Le’vy Processes and Minimal Entropy Martingale Measures, Quanutative Finance, World Scientific, Imperial College Press, 2012. [14] T. Rheinander and J. Sexton, Hedging Derivatives, Advanced Series on Statistical Science and Applied Probability, World Scientific Publishing, 2011. | ||
آمار تعداد مشاهده مقاله: 15,793 تعداد دریافت فایل اصل مقاله: 468 |