
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,757 |
تعداد دریافت فایل اصل مقاله | 7,656,171 |
New results of modern concept on the fourth-Hankel determinant of a certain subclass of analytic functions | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، Special Issue، اسفند 2021، صفحه 2243-2255 اصل مقاله (405.57 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.6116 | ||
نویسندگان | ||
Sarab Dakhil Theyab* 1؛ Waggas Galib Atshan2؛ Habeeb Kareem Abdullah1 | ||
1Department of Mathematics, Faculty of Education for Girls, University of Kufa, Najaf, Iraq | ||
2Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah, Iraq | ||
تاریخ دریافت: 23 مهر 1400، تاریخ بازنگری: 22 آبان 1400، تاریخ پذیرش: 17 آذر 1400 | ||
چکیده | ||
A form for the fourth Hankel determinant is given in this paper as $$H_4 (1)=\begin{vmatrix} 1 & \mathfrak{a}_2 & \mathfrak{a}_3 & \mathfrak{a}_4 \\ \mathfrak{a}_2 & \mathfrak{a}_3 & \mathfrak{a}_4 & \mathfrak{a}_5 \\ \mathfrak{a}_3 & \mathfrak{a}_4 & \mathfrak{a}_5 & \mathfrak{a}_6 \\ \mathfrak{a}_4 & \mathfrak{a}_5 & \mathfrak{a}_6 & \mathfrak{a}_7 \\ \end{vmatrix}$$ The modern concept of the fourth Hankel determinant is studied for the subclass of analytic functions $\mu \left(\beta ,\lambda ,t\right)$ defined here using the concept of subordination. Bounds on the coefficients $\left|a_n\right|$ with n = 2,3,4, 5,6,7 for the functions in this newly introduced class are given and the upper bound of the fourth Hankel determinant for this class is obtained. Lemmas used by the authors of this paper improve the results from a previously published paper. Interesting particular cases are given in the corollaries of the main theorems. | ||
کلیدواژهها | ||
Subordination؛ Analytic Function؛ Fourth Hankel Determinant؛ Coefficient Bounds | ||
مراجع | ||
[1] S.A. Al-Ameedee, W.G. Atshan and F.A. Al-Maamori, Second Hankel determinant for certain subclasses of Biunivalent functions, J. Phys. Conf. Ser. 1664 (2020) 012044. [2] K.O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions, Inequal. Theory Appl. 6 (2010) 1–7. [3] D.G. Cantor, Power series with integral coefficients, Bull. Am. Math. Soc. 69(3) (1963) 362–366. [4] N.E. Cho, V. Kumar, S.S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iran. Math. Soc. 45(1) (2019) 213–232. [5] P. Dienes, The Taylor Series: An Introduction to the Theory of Functions of a Complex Variable, NewYork-Dover: Mineola, NY, USA, 1957. [6] P.L. Duren, Univalent Functions, Springer Science and Business Media, Berlin, Germany, 1983. [7] A. Janteng, S.A. Halim and M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math. 7(2) (2006) 1–5. [8] D.V. Krishna and T. RamReddy, Second Hankel determinant for the class of Bazilevic functions, Stud. Univ. Babes-Bolyai Math. 60(3) (2015) 413–420. [9] W.C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proc. Conf. Complex Anal. (Tianjin 92), 1 (1994). [10] R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38(1) (2015) 365–386. [11] G. Polya and I.J. Schoenberg, Remarks on de la Vallee Poussin means and convex conformal maps of the circle, Pacific J. Math. 8(2) (1958) 259–334. [12] C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc. 1(1) (1966) 111–122. [13] C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika 14(1) (1967) 108–112. [14] I.A. Rahman, W.G. Atshan and G.I. Oros, New concept on fourth Hankel determinant of a certain subclass of analytic functions, Afrika Mat. 33(1) (2022). [15] S. Sharma and A.J. Obaid, Mathematical modelling, analysis and design of fuzzy logic controller for the control of ventilation systems using MATLAB fuzzy logic toolbox, J. Interdis. Math. 23(4) (2020) 843–849. [16] H.M. Srivastava, Q.Z. Ahmad, N. Khan and B. Khan, Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain, Math. 7(2) (2019) 181. [17] H.M. Srivastava, S. Altınkaya and S. Yalcın, Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator, Filomat 32(2) (2018) 503–516. | ||
آمار تعداد مشاهده مقاله: 43,962 تعداد دریافت فایل اصل مقاله: 459 |