
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,921 |
تعداد دریافت فایل اصل مقاله | 7,656,375 |
Isomorphisms in unital $C^*$-algebras | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 1، دوره 1، شماره 2، آبان 2010، صفحه 1-10 اصل مقاله (199.78 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2010.62 | ||
نویسندگان | ||
C. Park* 1؛ Th. M. Rassias2 | ||
1Department of Mathematics, Hanyang University, Seoul 133-791, Republic of Korea | ||
2Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece | ||
تاریخ دریافت: 06 بهمن 1388، تاریخ بازنگری: 17 اردیبهشت 1389، تاریخ پذیرش: 26 اردیبهشت 1389 | ||
چکیده | ||
It is shown that every almost linear bijection $h : A\rightarrow B$ of a unital $C^*$-algebra $A$ onto a unital $C^*$-algebra $B$ is a $C^*$-algebra isomorphism when $h(3^n u y) = h(3^n u) h(y)$ for all unitaries $u \in A$, all $y \in A$, and all $n\in \mathbb Z$, and that almost linear continuous bijection $h : A \rightarrow B$ of a unital $C^*$-algebra $A$ of real rank zero onto a unital $C^*$-algebra $B$ is a $C^*$-algebra isomorphism when $h(3^n u y) = h(3^n u) h(y)$ for all $u \in \{ v \in A \mid v = v^*, \|v\|=1, v \text{ is invertible} \}$, all $y \in A$, and all $n\in \mathbb Z$. Assume that $X$ and $Y$ are left normed modules over a unital $C^*$-algebra $A$. It is shown that every surjective isometry $T : X \rightarrow Y$, satisfying $T(0) =0$ and $T(ux) = u T(x)$ for all $x \in X$ and all unitaries $u \in A$, is an $A$-linear isomorphism. This is applied to investigate $C^*$-algebra isomorphisms in unital $C^*$-algebras. | ||
کلیدواژهها | ||
generalized Hyers-Ulam stability؛ $C^*$-algebra isomorphism؛ real rank zero؛ isometry | ||
آمار تعداد مشاهده مقاله: 49,018 تعداد دریافت فایل اصل مقاله: 3,656 |