
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,783 |
تعداد دریافت فایل اصل مقاله | 7,656,211 |
Fuzzy partial differential equations | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 28، دوره 13، شماره 2، مهر 2022، صفحه 301-306 اصل مقاله (293.1 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.6224 | ||
نویسنده | ||
Mayada Abualhomos* | ||
Department Basic Science, Applied Science Private University, Amman, Jordan | ||
تاریخ دریافت: 14 دی 1400، تاریخ بازنگری: 09 بهمن 1400، تاریخ پذیرش: 22 بهمن 1400 | ||
چکیده | ||
We will consider a type of elementary fuzzy partial differential equation that we wish to solve. The classical solution and the extension solution are discussed. | ||
کلیدواژهها | ||
Fuzzy partial differential equations؛ fuzzy numbers؛ classical solution؛ extension solution | ||
مراجع | ||
[1] M. Abualhomos, Numerical ways for solving fuzzy differential equations, Int. J. Appl. Engin. Res. 13 (2018), no. 6, 4610–4613. [2] J. Buckley and T. Feuring, Introduction to fuzzy partial differential equations, Fuzzy Sets Syst. 105 (1999), no. 2, 241–248. [3] J. Buckley and T. Feuring, Fuzzy differential equations, Fuzzy Sets Syst. 110 (2000), no. 1, 43–54. [4] D. Dubios and H. Prade, Towards fuzzy differential calculus, Part 3: Differentiation, Fuzzy Sets Syst. 8 (1982), 225–233. [5] D. Dubios and H. Prade, On several definitions of the differential of a fuzzy mapping, Fuzzy Sets Syst. 24 (1987), 117–120. [6] D. Dubios and H. Prade, Fundamental Of Fuzzy Sets, (1sted) Dordrecht, Kluwer Academic Publishers, 2000. [7] Z. Gonge, Wu. Cngxin and B. Li, On the problem of characterizing derivatives for the fuzzy-valued functions, Fuzzy Sets Syst. 127 (2002), 315–322. [8] J. Park and H. Han, Fuzzy differential equations, Fuzzy Sets Syst. 110 (2000), no. 1, 69–77. [9] D. Vorobiev and S. Seikakala, Towards the theory of fuzzy differential, Fuzzy Sets Syst. 125 (2002), no. 2, 231–237. | ||
آمار تعداد مشاهده مقاله: 43,949 تعداد دریافت فایل اصل مقاله: 656 |